
Automated Driving System Toolbox™
Reference

R2018b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Automated Driving System Toolbox™ Reference
© COPYRIGHT 2017–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2017 Online only New for Version 1.0 (Release 2017a)
September 2017 Online only Revised for Version 1.1 (Release 2017b)
March 2018 Online only Revised for Version 1.2 (Release 2018a)
September 2018 Online only Revised for Version 1.3 (Release 2018b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Apps in Automated Driving System Toolbox
1

Blocks in Automated Driving System Toolbox —
Alphabetical List

2

Functions in Automated Driving System Toolbox
3

Objects in Automated Driving System Toolbox
4

iii

Contents

Apps in Automated Driving System
Toolbox

1

Bird's-Eye Scope
Visualize sensor coverages, detections, and tracks

Description
The Bird's-Eye Scope visualizes aspects of a driving scenario found in your Simulink®

model. Using the scope, you can:

• Inspect the coverage areas of radar and vision sensors.
• Analyze the sensor detections of actors, road boundaries, and lane boundaries.
• Analyze the tracking results of moving actors within the scenario.

To get started, open the scope and click Find Signals. The scope updates the block
diagram, finds signals representing aspects of the driving scenario, organizes the signals
into groups, and displays the signals. You can then analyze the signals as you simulate,
organize the signals into new groups, and modify the graphical display of the signals.

For more details about using the scope, see “Visualize Sensor Data and Tracks in Bird's-
Eye Scope”.

Open the Bird's-Eye Scope

From the Simulink model toolbar, click the Bird's-Eye Scope button . If instead
you see a button for a different model visualization tool, such as the Simulation Data

Inspector or Logic Analyzer , click the arrow next to the displayed button
and select Bird's-Eye Scope.

1 Apps in Automated Driving System Toolbox

1-2

Your most recent choice for data visualization is saved across Simulink sessions.

Examples
• “Visualize Sensor Data and Tracks in Bird's-Eye Scope”
• “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink”
• “Lane Keeping Assist with Lane Detection”
• “Adaptive Cruise Control with Sensor Fusion”
• “Lateral Control Tutorial”
• “Automatic Emergency Braking with Sensor Fusion”

Parameters

Global Settings
To access the global settings of the Bird's-Eye Scope, from the scope toolstrip, click
Settings.

Longitudinal axis limits — Longitudinal axis limits
[-60,60] (default) | [min, max] vector

Longitudinal axis limits, specified as a [min, max] vector.

 Bird's-Eye Scope

1-3

Tunable: Yes

Lateral axis limits — Lateral axis limits
[-30,30] (default) | [min, max] vector

Lateral axis limits, specified as a [min, max] vector.

Tunable: Yes

Track position selector — Selection matrix used to extract positions of
tracked objects
[1,0,0,0,0,0; 0,0,1,0,0,0] (default) | 2-by-n matrix of zeros and ones

Selection matrix used to extract the positions of tracked objects, specified as a 2-by-n
matrix of zeros and ones. n is the size of the state vector for each tracked object in the
scenario. The scope multiplies the selection matrix by the state vector of a tracked object
to return the (x, y) position of the object.

• The first row of the matrix corresponds to the x-coordinate stored within the state
vector.

• The second row of the matrix corresponds to the y-coordinate stored within the state
vector.

This parameter applies to signals from a Multi Object Tracker block that were initialized
by a linear Kalman filter. The state vector format depends on the motion model used to
initialize the Kalman filter. For more details on these motion models, see trackingKF
and “Linear Kalman Filters”.

The default selection matrix is for a 3-D constant velocity motion model. In this motion
model, the state vectors of tracked objects are of the form [x;vx;y;vy;z;vz], where:

• x is the x-coordinate of a tracked object.
• vx is the velocity of a tracked object in the x-direction.
• y is the y-coordinate of a tracked object.
• vy is the velocity of a tracked object in the y-direction.
• z is the z-coordinate of a tracked object.
• vz is the velocity of a tracked object in the z-direction.

Multiplying the state vector by this selection matrix returns only the first element of the
state vector, x, and the third element of the state vector, y.

1 Apps in Automated Driving System Toolbox

1-4

[1,0,0,0,0,0; 0,0,1,0,0,0] * [x;vx;y;vy;z;vz] = [x;y]

Tunable: No

Track velocity selector — Selection matrix used to extract velocities of
tracked objects
[0,1,0,0,0,0; 0,0,0,1,0,0] (default) | 2-by-n matrix of zeros and ones

Selection matrix used to extract the velocities of tracked objects, specified as a 2-by-n
matrix of zeros and ones. n is the size of the state vector for each tracked object in the
scenario. The scope multiplies the selection matrix by the state vector of a tracked object
to return the velocity of the object in the (x, y) direction.

• The first row of the matrix corresponds to the x-direction velocity stored within the
state vector.

• The second row of the matrix corresponds to the y-direction velocity stored within the
state vector.

This parameter applies to signals from a Multi Object Tracker block that were initialized
by a linear Kalman filter. The state vector format depends on the motion model used to
initialize the Kalman filter. For more details on these motion models, see trackingKF
and “Linear Kalman Filters”.

The default selection matrix is for a 3-D constant velocity motion model. In this motion
model, the state vectors of tracked objects are of the form [x;vx;y;vy;z;vz], where:

• x is the x-coordinate of a tracked object.
• vx is the velocity of a tracked object in the x-direction.
• y is the y-coordinate of a tracked object.
• vy is the velocity of a tracked object in the y-direction.
• z is the z-coordinate of a tracked object.
• vz is the velocity of a tracked object in the z-direction.

Multiplying the state vector by this selection matrix returns only the second element of
the state vector, vx, and the fourth element of the state vector, vy.

[0,1,0,0,0,0; 0,0,0,1,0,0] * [x;vx;y;vy;z;vz] = [vx;vy]

Tunable: No

 Bird's-Eye Scope

1-5

Display short signal names — Display signal names without path information
on (default) | off

• Select this parameter to display short signal names (signals without path information).
• Clear this parameter to display long signal names (signals with path information).

Consider the signal VisionDetection within subsystem Sensor Simulation. When
you select this parameter, the short name, VisionDetection, is displayed. When you
clear this parameter, the long name, Sensor Simulation/VisionDetection, is
displayed.

Tunable: Yes

Signal Properties
These properties are a subset of the available signal properties. To view all the properties
of a signal, first select that signal from the left pane. Then, from the scope toolstrip, click
Properties.

Alpha — Transparency of coverage area
0.1 (default) | scalar in the range [0, 1]

Transparency of the coverage area, specified as a scalar in the range [0, 1]. A value of 0
makes the coverage area fully transparent. A value of 1 makes the coverage area fully
opaque.

This property is available only for signals in the Sensor Coverage group.

Tunable: Yes

Velocity Scaling — Scale factor for magnitude length of velocity vectors
1 (default) | scalar in the range [0, 20]

Scale factor for the magnitude length of the velocity vectors, specified as a scalar in the
range [0, 20]. The scope renders the magnitude vector value as M × Velocity Scaling,
where M is the magnitude of the velocity.

This property is available only for signals in the Detections or Tracks groups.

Tunable: Yes

1 Apps in Automated Driving System Toolbox

1-6

Limitations
• Referenced models are not supported. To visualize signals that are within referenced

models, move the output of these signals to the top-level model.
• Rapid accelerator mode is not supported.
• If you initialize your model in fast restart, then after the first time you simulate, the

Find Signals button is disabled. To enable Find Signals again, from the model

toolstrip, click the Disable Fast Restart button .
• Actors buses are supported only as outputs of the Scenario Reader block, such as the

one used in the “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink”
example.

Definitions

Applicable Signals
When the Bird's-Eye Scope finds signals in your model, it automatically groups signals
by type. These groupings are based on the sources of the signals within the model.

 Bird's-Eye Scope

1-7

Signal Group Description Signal Sources
Ground Truth Road boundaries, lane

markings, and actors in the
scenario, including the ego
vehicle

You cannot modify this
group or any of the signals
within it.

• Scenario Reader block
(such as the one used in
the “Sensor Fusion Using
Synthetic Radar and
Vision Data in Simulink”
example)

• Vision Detection
Generator and Radar
Detection Generator
blocks (for actor profile
information only, such as
the length, width, and
height of actors)

• If actor profile
information is not set
or is inconsistent
between blocks, the
scope sets the actor
profiles to the block
defaults.

• The profile of the ego
vehicle is always set
to the block defaults.

Sensor Coverage Coverage areas of your
vision and radar sensors,
sorted into Vision and
Radar subgroups

You can move or modify
these subgroups and their
signals. You cannot move or
modify the top-level Sensor
Coverage group.

• Vision Detection
Generator block

• Radar Detection
Generator block

1 Apps in Automated Driving System Toolbox

1-8

Signal Group Description Signal Sources
Detections Detections obtained from

your vision and radar
sensors, sorted into Vision
and Radar subgroups

You can move or modify
these subgroups and their
signals. You cannot move or
modify the top-level
Detections group.

• Vision Detection
Generator block

• Radar Detection
Generator block

Tracks Tracks of objects in the
scenario

• Multi Object Tracker
block

Other Applicable Signals Signals that the scope
cannot automatically group,
such as ones that combine
information from multiple
sensors

Signals in this group do not
display during simulation.

• Blocks that combine or
cluster signals (such as
the Detection
Concatenation block)

• Nonvirtual Simulink
buses containing position
and velocity information
for detections and tracks

To view a model that includes samples of all these signals types, see the “Sensor Fusion
Using Synthetic Radar and Vision Data in Simulink” example.

Tips
• To find the source of a signal within the model, in the left pane of the scope, right-click

a signal and select Highlight in Model.
• You can show or hide signals while simulating. For example, to hide a sensor coverage,
first select it from the left pane. Then, from the Properties tab, clear the Show
Sensor Coverage check box.

• When you reopen the scope after saving and closing a model, the scope canvas is
initially blank. Click Find Signals to find the signals again. The signals have the same
properties from when you last saved the model.

 Bird's-Eye Scope

1-9

See Also
Detection Concatenation | Multi Object Tracker | Radar Detection Generator | Vision
Detection Generator

Topics
“Visualize Sensor Data and Tracks in Bird's-Eye Scope”
“Sensor Fusion Using Synthetic Radar and Vision Data in Simulink”
“Lane Keeping Assist with Lane Detection”
“Adaptive Cruise Control with Sensor Fusion”
“Lateral Control Tutorial”
“Automatic Emergency Braking with Sensor Fusion”

Introduced in R2018b

1 Apps in Automated Driving System Toolbox

1-10

Driving Scenario Designer
Design driving scenarios, configure sensors, and generate synthetic object detections

Description
The Driving Scenario Designer app enables you to design synthetic driving scenarios
for testing your autonomous driving systems.

Using the app, you can:

• Create road and actor models using a drag-and-drop interface.
• Configure vision and radar sensors mounted on the ego car, and use these sensors to

simulate detections of actors and lane boundaries in the scenario.
• Load driving scenarios representing European New Car Assessment Programme (Euro

NCAP®) test protocols [1][2][3] and other prebuilt scenarios.
• Import OpenDRIVE® roads and lanes into a driving scenario. The app supports

OpenDRIVE format specification version 1.4H [4].
• Export sensor detections to MATLAB®, or generate MATLAB code of the scenario that

produced the detections.

You can use synthetic detections generated from a scenario to test your sensor fusion or
control algorithms. To learn more about using the app, see Driving Scenario Designer.

Open the Driving Scenario Designer App
• MATLAB Toolstrip: On the Apps tab, under Automotive, click the app icon.
• MATLAB command prompt: Enter drivingScenarioDesigner.

Examples

 Driving Scenario Designer

1-11

https://www.mathworks.com/videos/driving-scenario-designer-1529302116471.html

Build a Driving Scenario

Build a driving scenario of a vehicle driving down a curved road, and export the road and
vehicle models to the MATLAB workspace. For a more detailed example of building a
driving scenario, see “Build a Driving Scenario and Generate Synthetic Detections”.

Open the Driving Scenario Designer app.

drivingScenarioDesigner

Create a curved road. From the app toolstrip, click Add Road. Click the bottom of the
canvas, extend the road path to the middle of the canvas, and click the canvas again.
Extend the road path to the top of the canvas, and then double-click to create the road. To
make the curve more complex, click and drag the road centers (open circles), or double-
click the road to add more road centers.

1 Apps in Automated Driving System Toolbox

1-12

Add lanes to the road. In the left pane, on the Roads tab, expand the Lanes section. Set
the Number of lanes to 2.

By default, the road is one-way and has solid lane markings on either side to indicate the
shoulder.

 Driving Scenario Designer

1-13

Add a vehicle at one end of the road. From the app toolstrip, select Add Actor > Car.
Then click the road to set the initial position of the car.

1 Apps in Automated Driving System Toolbox

1-14

Set the driving path of the car. Right-click the car, select Add Waypoints, and add
waypoints for the car to pass through. After you add the last waypoint, press Enter. The
car autorotates in the direction of the first waypoint.

 Driving Scenario Designer

1-15

1 Apps in Automated Driving System Toolbox

1-16

Adjust the speed of the car as it passes between waypoints. In the left pane, on the
Actors tab, in the Path section, clear the Constant Speed check box. Then, in the
Waypoints table, set the velocity, v (m/s), of the car in m/s as it enters each waypoint
segment. To model more realistic conditions, increase the speed of the car for the straight
segments and decrease its speed for the curved segments. For example:

 Driving Scenario Designer

1-17

Run the scenario, and adjust settings as needed. Then click Save > Roads & Actors to
save the road and car models to a MAT-file.

Generate Detections from Prebuilt Scenario

Generate vision sensor detections from a prebuilt driving scenario of a Euro NCAP test
protocol.

• For more details on prebuilt scenarios available from the app, see “Generate Synthetic
Detections from a Prebuilt Driving Scenario”.

• For more details on available Euro NCAP scenarios, see “Generate Synthetic
Detections from a Euro NCAP Scenario”.

1 Apps in Automated Driving System Toolbox

1-18

Load a Euro NCAP automatic emergency braking (AEB) scenario of a collision with a
pedestrian child. At collision time, the point of impact occurs 50% of the way across the
width of the car.

Path = fullfile(matlabroot,'toolbox','driving','drivingdata', ...
 'PrebuiltScenarios','EuroNCAP');
addpath(genpath(Path)) % Add folder to path
drivingScenarioDesigner('AEB_PedestrianChild_Nearside_50width.mat')
rmpath(path) % Remove folder from path

 Driving Scenario Designer

1-19

Add a front-facing radar sensor to the ego car. First click Add Radar. Then, on the
Sensor Canvas, click the predefined sensor location at the front window of the car. By
default, the radar is long-range.

Run the scenario. While the scenario simulation runs, inspect different aspects of the
simulation by toggling between canvases and views. You can toggle between the Sensor
Canvas and Scenario Canvas and between the Bird's-Eye Plot and Ego-Centric View.

1 Apps in Automated Driving System Toolbox

1-20

Export the sensor data to the MATLAB workspace. Click Export > Export Sensor Data,
enter a workspace variable name, and click OK.

Add OpenDRIVE Road to Scenario

Import an OpenDRIVE road network into the Driving Scenario Designer app. For a
more detailed example, see “Add OpenDRIVE Roads to Driving Scenario”.

Open the Driving Scenario Designer app.

drivingScenarioDesigner

From the app toolstrip, select Open > OpenDRIVE Road Network. Then, from your
MATLAB root folder, navigate to and open this file:

matlabroot/toolbox/driving/drivingdata/intersection.xodr

 Driving Scenario Designer

1-21

Inspect the road network by zooming in on the scenario.

• “Build a Driving Scenario and Generate Synthetic Detections”
• “Generate Synthetic Detections from a Prebuilt Driving Scenario”
• “Generate Synthetic Detections from a Euro NCAP Scenario”
• “Add OpenDRIVE Roads to Driving Scenario”
• “Automatic Emergency Braking with Sensor Fusion”

1 Apps in Automated Driving System Toolbox

1-22

Programmatic Use
drivingScenarioDesigner opens a blank session of the Driving Scenario Designer
app.

drivingScenarioDesigner(sessionFileName) opens the app and loads the
specified MAT-file into the app. This file must be a saved Driving Scenario Designer app
session. If the file is not in the current folder or not in a folder on the MATLAB path,
specify the full path name. For example:

drivingScenarioDesigner('C:\Desktop\myDrivingScenario.mat');

You can also load prebuilt driving scenario MAT-files. Before loading a prebuilt scenario,
add the folder containing the scenario to the MATLAB path. For an example, see
“Generate Detections from Prebuilt Scenario” on page 1-18.

Limitations
Euro NCAP Limitations

• Scenarios of speed assistance systems (SAS) are not supported. These scenarios
require the detection of speed limits from traffic signs, which the app does not
support.

OpenDRIVE Limitations

• You can import only lanes and roads. The import of road objects and traffic signals is
not supported.

• OpenDRIVE files containing large road networks can take up to several minutes to
load. In addition, these road networks can cause slow interactions on the app canvas.
Examples of large road networks include ones that model the roads of a city or ones
with roads that are thousands of meters long.

• Lanes with variable widths are not supported. The width is set to the highest width
found within that lane. For example, if a lane has a width that varies from 2 meters to
4 meters, the app sets the lane width to 4 meters throughout.

• Roads with multiple lane marking styles are not supported. The app applies the first
found marking style to all lanes in the road. For example, if a road has Dashed and
Solid lane markings, the app applies Dashed lane markings throughout.

 Driving Scenario Designer

1-23

• Lane marking styles Bott Dots, Curbs, and Grass are not supported. If imported
roads have these lane marking styles, the app sets their lane markings to the default
style, as determined by the number of lanes in the road.

Definitions

Road Elevation and Banking Angle
The Roads tab provides options for controlling the elevation and banking angle of a road.

When working with roads containing nondefault elevations or banking angles, keep these
tips in mind:

• When you add a road center to an elevated road, the default z-dimension of the road
center is 0. To adjust the elevation of the road center to match the elevation of
surrounding road centers, first select the road. Then, on the Roads tab, in the Road
Centers section, adjust the z (m) parameter of the road center.

• When you add an actor to a road, you do not have to change the actor position to
match changes in elevation angle or banking angle. The actor follows the elevation
and banking angle of the road automatically.

• When two elevated roads form a junction, the elevation around that junction can vary
widely. The exact amount of elevation depends on how close the road centers of each
road are to each other. If you try to place an actor onto the junction, the app might be
unable to compute the precise elevation of the actor. Therefore, the app cannot place
the actor on that junction.

To address this issue, modify the intersecting roads by moving the road centers of
each road away from each other. Alternatively, manually adjust the elevation of the
actor to match the elevation of the road surface.

Lane Specifications
The Roads tab provides options for changing the number of lanes in a road and
specifying its lane markings. You can specify the Number of lanes parameter as a:

• Positive integer scalar, M — Create an M-lane road whose default lane markings
indicate that the road is one-way.

1 Apps in Automated Driving System Toolbox

1-24

• Two-element vector of positive integers, [M N] — Create an (M+N)-lane road whose
default lane markings indicate that the road is two-way. The first M lanes travel in one
direction. The next N lanes travel in the opposite direction.

If you change the Number of lanes parameter from a scalar to a vector, the default lane
markings also change. If the change creates an impossible road configuration, the app
resets the Lane Width (m) parameter for all lanes to the default of 3.6. This resetting
can occur when the updated road contains lanes with very small widths. For example, if a
lane has a width that is less than the width of one of its lane markings, then all lanes are
reset to a width of 3.6 meters.

Sample Time
Under Settings, the Sample Time (ms) parameter controls how frequently the
simulation updates. Increase the sample time to speed up simulation. This increase has no
effect on actor speeds, even though actors can appear to go faster during simulation. The
actor positions are just being sampled and displayed on the app at less frequent intervals,
resulting in faster, choppier animations. Decreasing the sample time results in smoother
animations, but the actors appear to move slower, and the simulation takes longer.

The sample time does not correlate to the actual time. For example, if the app samples
every 0.1 seconds (Sample Time (ms) = 100) and runs for 10 seconds, it might take less
than 10 seconds for the 10 seconds of simulation time to elapse. Any apparent
synchronization between the sample time and actual time is coincidental.

Tips
• You can undo (press Ctrl+Z) and redo (press Ctrl+Y) changes you make on the

scenario and sensor canvases. For example, you can use these shortcuts to delete a
recently placed road center or redo the movement of a radar sensor.

• During simulation, the default camera and radar sensors update every 100 ms
(Update Interval (ms) = 100). To ensure that the app samples and displays the
detections found at these intervals, the update interval must be an integer multiple of
the app sample time. By default, the app samples the simulation every 10 ms (Sample
Time (ms) = 10). For more details on the app sample time, see “Sample Time” on
page 1-25.

 Driving Scenario Designer

1-25

Compatibility Considerations

Corrections to Image Width and Image Height camera
parameters of Driving Scenario Designer
Behavior changed in R2018b

Starting in R2018b, in the Camera Settings group of the Driving Scenario Designer
app, the Image Width and Image Height parameters set their expected values.
Previously, Image Width set the height of images produced by the camera, and Image
Height set the width of images produced by the camera.

If you are using R2018a, to produce the expected image sizes, transpose the values set in
the Image Width and Image Height parameters.

References
[1] European New Car Assessment Programme. Euro NCAP Assessment Protocol - SA.

Version 8.0.2. January 2018.

[2] European New Car Assessment Programme. Euro NCAP AEB C2C Test Protocol.
Version 2.0.1. January 2018.

[3] European New Car Assessment Programme. Euro NCAP LSS Test Protocol. Version
2.0.1. January 2018.

[4] Dupuis, Marius, et al. OpenDRIVE Format Specification. Revision 1.4, Issue H,
Document No. VI2014.106. Bad Aibling, Germany: VIRES Simulationstechnologie
GmbH, November 4, 2015.

See Also
Classes
drivingScenario

System Objects
radarDetectionGenerator | visionDetectionGenerator

1 Apps in Automated Driving System Toolbox

1-26

Topics
“Build a Driving Scenario and Generate Synthetic Detections”
“Generate Synthetic Detections from a Prebuilt Driving Scenario”
“Generate Synthetic Detections from a Euro NCAP Scenario”
“Add OpenDRIVE Roads to Driving Scenario”
“Automatic Emergency Braking with Sensor Fusion”

External Websites
Euro NCAP Safety Assist Protocols
opendrive.org

Introduced in R2018a

 Driving Scenario Designer

1-27

https://www.euroncap.com/en/for-engineers/protocols/safety-assist/
http://opendrive.org/

Ground Truth Labeler
Label ground truth data for automated driving applications

Description
The Ground Truth Labeler app enables you to label ground truth data in a video, in an
image sequence, or from a custom data source reader. Using the app, you can:

• Define rectangular regions of interest (ROI) labels, polyline ROI labels, pixel ROI
labels, and scene labels, and use these labels to interactively label your ground truth
data.

• Use built-in detection or tracking algorithms to label your ground truth data.
• Write, import, and use your own custom automation algorithm to automatically label

ground truth. See “Create Automation Algorithm for Labeling” (Computer Vision
System Toolbox).

• Evaluate the performance of your label automation algorithms using a visual summary.
See “View Summary of Ground Truth Labels” (Computer Vision System Toolbox).

• Export the labeled ground truth as a groundTruth object. You can use this object for
system verification or for training an object detector or semantic segmentation
network. See “Train Object Detector or Semantic Segmentation Network from Ground
Truth Data” (Computer Vision System Toolbox).

• Display time-synchronized signals, such as lidar or CAN bus data, using the
driving.connector.Connector API.

To learn more about the app, see Ground Truth Labeler App.

Open the Ground Truth Labeler App
• MATLAB Toolstrip: On the Apps tab, under Automotive, click the app icon.
• MATLAB command prompt: Enter groundTruthLabeler.

1 Apps in Automated Driving System Toolbox

1-28

https://www.mathworks.com/videos/ground-truth-labeler-app-1529300803691.html

Examples
• “Get Started with the Ground Truth Labeler”
• “Automate Ground Truth Labeling of Lane Boundaries”
• “Automate Ground Truth Labeling for Semantic Segmentation”
• “Automate Attributes of Labeled Objects”
• “Evaluate Lane Boundary Detections Against Ground Truth Data”
• “Evaluate and Visualize Lane Boundary Detections Against Ground Truth”

Programmatic Use
groundTruthLabeler opens a new session of the app, enabling you to label ground
truth data.

groundTruthLabeler(videoFileName) opens the app and loads the input video. The
video file must have an extension supported by VideoReader.
Example: groundTruthLabeler('caltech_cordova1.avi')

groundTruthLabeler(imageSeqFolder) opens the app and loads the image sequence
from the input folder. imageSeqFolder must be a string scalar or character vector that
specifies the folder containing the image files.

The image files must have extensions supported by imformats and are loaded in the
order returned by the dir function.

groundTruthLabeler(imageSeqFolder,timestamps) opens the app and loads a
sequence of images with their corresponding timestamps. timestamps must be a
duration vector of the same length as the number of images in the sequence.

For example, load a sequence of road images and their corresponding timestamps into the
app.

imageDir = fullfile(toolboxdir('driving'),'drivingdata','roadSequence');
load(fullfile(imageDir,'timeStamps.mat'))
groundTruthLabeler(imageDir,timeStamps)

groundTruthLabeler(gtSource) opens the app and loads the
groundTruthDataSource object, gtSource. The object contains a custom data source

 Ground Truth Labeler

1-29

and corresponding timestamps. See “Use Custom Data Source Reader for Ground Truth
Labeling” (Computer Vision System Toolbox).

groundTruthLabeler(sessionFile) opens the app and loads a saved app session,
sessionFile. The sessionFile input contains the path and file name. The MAT-file
that sessionFile points to contains the saved session.

groundTruthLabeler(___ ,'ConnectorTargetHandle','connector') opens the
app with a custom connector. 'connector' is a handle to a
driving.connector.Connector class. The handle implements a custom analysis or
visualization tool that is time-synchronized with the Ground Truth Labeler app. For
example, to associate a connector target defined in class MyConnectorClass, specify
@MyConnectorClass.

For example, open the app, load a 10-second video into it, and open a lidar visualization
tool that is time-synchronized to the video.

groundTruthLabeler('01_city_c2s_fcw_10s.mp4','ConnectorTargetHandle',@LidarDisplay);

Limitations
• The built-in automation algorithms support the automation of rectangular ROI labels

only. When you select a built-in algorithm and click Automate, scene labels, pixel
labels, polyline labels, sublabels, and attributes are not imported into the automation
session. To automate the labeling of these features, create a custom automation
algorithm. See “Create Automation Algorithm for Labeling” (Computer Vision System
Toolbox).

• Pixel ROI labels do not support sublabels or attributes.
• The Label Summary window does not support sublabels or attributes

Tips
• To avoid having to relabel ground truth with new labels, organize the labeling scheme

you want to use before marking your ground truth.

1 Apps in Automated Driving System Toolbox

1-30

Algorithms
The Ground Truth Labeler app provides built-in algorithms that you can use to
automate labeling. From the app toolstrip, click Select Algorithm, and then select an
automation algorithm.

Built-In Automation Algorithm Description
ACF People Detector Detect and label people using a pretrained

detector based on aggregate channel
features (ACF). With this algorithm, you do
not need to draw any ROI labels.

Point Tracker Track and label one or more rectangular
ROI labels over short intervals using the
Kanade-Lucas-Tomasi (KLT) algorithm.

Temporal Interpolator Estimate ROIs in intermediate frames using
the interpolation of rectangular ROIs in key
frames. Draw ROIs on a minimum of two
frames (at the beginning and at the end of
the interval). The interpolation algorithm
estimates the ROIs between the frames.

ACF Vehicle Detector Detect and label vehicles using a pretrained
detector based on ACF. With this algorithm,
you do not need to draw any ROI labels.

See Also
Apps
Image Labeler | Video Labeler

Functions
objectDetectorTrainingData | pixelLabelTrainingData

Objects
groundTruth | groundTruthDataSource | labelDefinitionCreator

Topics
“Get Started with the Ground Truth Labeler”

 Ground Truth Labeler

1-31

“Automate Ground Truth Labeling of Lane Boundaries”
“Automate Ground Truth Labeling for Semantic Segmentation”
“Automate Attributes of Labeled Objects”
“Evaluate Lane Boundary Detections Against Ground Truth Data”
“Evaluate and Visualize Lane Boundary Detections Against Ground Truth”
“Choose a Labeling App” (Computer Vision System Toolbox)
“Use Custom Data Source Reader for Ground Truth Labeling” (Computer Vision System
Toolbox)
“Use Sublabels and Attributes to Label Ground Truth Data” (Computer Vision System
Toolbox)
“Label Pixels for Semantic Segmentation” (Computer Vision System Toolbox)
“Create Automation Algorithm for Labeling” (Computer Vision System Toolbox)
“Share and Store Labeled Ground Truth Data” (Computer Vision System Toolbox)
“Train Object Detector or Semantic Segmentation Network from Ground Truth Data”
(Computer Vision System Toolbox)

Introduced in R2017a

1 Apps in Automated Driving System Toolbox

1-32

Blocks in Automated Driving System
Toolbox — Alphabetical List

2

Detection Concatenation
Combine detection reports from different sensors
Library: Automated Driving System Toolbox

Description
The Detection Concatenation block combines detection reports from multiple sensor
blocks onto a single output bus. Sensor blocks include the Radar Detection Generator and
the Vision Detection Generator blocks. Concatenation is useful when detections from
multiple sensor blocks are passed into a Multiobject Tracker block. You can accommodate
additional sensors by changing the Number of input sensors to combine parameter to
increase the number of input ports.

Ports
Input
In1 — Sensor detections via first input port
structure input via Simulink bus

Detection list, specified as a structure input via a Simulink bus. See “Getting Started with
Buses” (Simulink). The definitions of the detection lists are found in the Detections
output port descriptions of the Radar Detection Generator and Vision Detection
Generator blocks.

In2 — Sensor detections via second input port
structure input via Simulink bus

Detection list, specified as a structure input via a Simulink bus. See “Getting Started with
Buses” (Simulink). The definitions of the detection lists are found in the Detections
output port descriptions of the Radar Detection Generator and Vision Detection
Generator blocks.

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-2

InN — Sensor detections via Nth input port
structure input via Simulink bus

Detection list, specified as a structure input via a Simulink bus. See “Getting Started with
Buses” (Simulink). The definitions of the detection lists are found in the Detections
output port descriptions of the Radar Detection Generator and Vision Detection
Generator blocks.

Output
Out — Concatenated sensor detections
structure output via Simulink bus

Concatenated sensor detections from all input buses, output as a structure via a Simulink
bus. See “Getting Started with Buses” (Simulink). The definitions of the detection lists are
found in the Detections output port descriptions of the Radar Detection Generator and
Vision Detection Generator blocks

The Maximum number of reported detections output is the sum of the Maximum
number of reported detections of all input ports. The number of actual detections is
the sum of the number of actual detections in each input port. The ObjectAttributes
fields in the detection structure are the union of the ObjectAttributes fields in each
input port.

Parameters
Number of input sensors to combine — Number of input sensor ports
2 (default) | positive integer

Number of input detection ports, specified as a positive integer. Each input port is
labelled In1, In2, … InN where N is the value set by this parameter.
Example: 5
Data Types: double

Source of output bus name — Source of output bus name
Auto (default) | Property

 Detection Concatenation

2-3

Source of output bus name, specified as Auto or Property. If you choose Auto, the
block will automatically create a bus name. If you choose Property, specify the bus
name using the Specify an output bus name parameter.
Example: Property

Specify an output bus name — Name of output bus
character string

Name of output bus, specified as a character string.
Example: visionbus

Dependencies

To enable this parameter, set the Source of output bus name parameter to Property.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If
you want your block to run as compiled code, choose Code Generation. Compiled code
requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block
runs the underlying System object™ in MATLAB. You can change and execute your model
quickly. When you are satisfied with your results, you can then run the block using Code
Generation. Long simulations run faster than in interpreted execution. You can run
repeated executions without recompiling. However, if you change any block parameters,
then the block automatically recompiles before execution.

When setting this parameter, you must take into account the overall model simulation
mode. The table shows how the Simulate using parameter interacts with the overall
simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-4

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid

Accelerator
Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink) from the Simulink
documentation.

See Also
Bird's-Eye Scope | Multiobject Tracker | Radar Detection Generator | Vision Detection
Generator

Topics
“Getting Started with Buses” (Simulink)

Introduced in R2017b

 Detection Concatenation

2-5

Lateral Controller Stanley
Compute steering angle command for path following using Stanley method
Library: Automated Driving System Toolbox / Vehicle

Controller

Description
The Lateral Controller Stanley block computes the steering angle command, in degrees,
that adjusts the current pose of a vehicle to match a reference pose, given the vehicle's
current velocity and direction. The controller computes this command using the Stanley
method [1], whose control law is based on a kinematic bicycle model. Use this controller
for path following in low-speed environments, where inertial effects are minimal.

Ports

Input
RefPose — Reference pose
[x, y, Θ] vector

Reference pose, specified as an [x, y, Θ] vector. x and y are in meters, and Θ is in degrees.

x and y specify the reference point to steer the vehicle toward. Θ specifies the orientation
angle of the path at this reference point and is positive in the counterclockwise direction.

• For a vehicle in forward motion, the reference point is the point on the path that is
closest to the center of the vehicle's front axle.

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-6

• For a vehicle in reverse motion, the reference point is the point on the path that is
closest to the center of the vehicle's rear axle.

 Lateral Controller Stanley

2-7

Data Types: single | double

CurrPose — Current pose
[x, y, Θ] vector

Current pose of the vehicle, specified as an [x, y, Θ] vector. x and y are in meters, and Θ is
in degrees.

x and y specify the location of the vehicle, which is defined as the center of the vehicle's
rear axle.

Θ specifies the orientation angle of the vehicle at location (x,y) and is positive in the
counterclockwise direction.

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-8

For more details on vehicle pose, see “Coordinate Systems in Automated Driving System
Toolbox”.
Data Types: single | double

CurrVelocity — Current longitudinal velocity
scalar

Current longitudinal velocity of the vehicle, specified as a scalar. Units are in meters per
second.

• If the vehicle is in forward motion, then this value must be greater than 0.
• If the vehicle is in reverse motion, then this value must be less than 0.
• A value of 0 represents a vehicle that is not in motion.

Data Types: single | double

Direction — Driving direction of vehicle
1 (forward motion) | -1 (reverse motion)

Driving direction of the vehicle, specified as 1 for forward motion or -1 for reverse
motion. The driving direction determines the position error and angle error used to
compute the steering angle command. For more details, see “Algorithms” on page 2-11.

 Lateral Controller Stanley

2-9

Output
SteerCmd — Steering angle command
scalar

Steering angle command, in degrees, returned as a scalar. This value is positive in the
counterclockwise direction.

For more details, see “Coordinate Systems in Automated Driving System Toolbox”.

Parameters
Position gain of forward motion — Position gain of vehicle in forward
motion
2.5 (default) | positive scalar

Position gain of the vehicle when it is in forward motion, specified as a positive scalar.
This value determines how much the position error affects the steering angle. Typical
values are in the range [1, 5]. Increase this value to increase the magnitude of the
steering angle.

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-10

Position gain of reverse motion — Position gain of vehicle in reverse motion
2.5 (default) | positive scalar

Position gain of the vehicle when it is in reverse motion, specified as a positive scalar. This
value determines how much the position error affects the steering angle. Typical values
are in the range [1, 5]. Increase this value to increase the magnitude of the steering
angle.

Wheelbase of vehicle (m) — Distance between front and rear axles of vehicle
2.8 (default) | scalar

Distance between the front and rear axles of the vehicle, in meters, specified as a scalar.
This value applies only when the vehicle is in forward motion, that is, when the Direction
input port is 1.

Maximum steering angle (deg) — Maximum allowed steering angle
35 (default) | scalar in the range (0, 180)

Maximum allowed steering angle of the vehicle, in degrees, specified as a scalar in the
range (0, 180).

The output from the SteerCmd port is saturated to the range [–M, M], where M is the
value of the Maximum steering angle (deg) parameter.

• Values below –M are set to –M.
• Values above M are set to M.

Algorithms
To compute the steering angle command, the controller minimizes the position error and
the angle error of the current pose with respect to the reference pose. The driving
direction of the vehicle determines these error values.

When the vehicle is in forward motion (Direction parameter is 1):

• The position error is the lateral distance from the center of the front axle to the
reference point on the path.

• The angle error is the angle of the front wheel with respect to reference path.

When the vehicle is in reverse motion (Direction parameter is -1):

 Lateral Controller Stanley

2-11

• The position error is the lateral distance from the center of the rear axle to the
reference point on the path.

• The angle error is the angle of the rear wheel with respect to reference path.

For details on how the controller minimizes these errors, see [1].

References
[1] Hoffmann, Gabriel M., Claire J. Tomlin, Michael Montemerlo, and Sebastian Thrun.

"Autonomous Automobile Trajectory Tracking for Off-Road Driving: Controller
Design, Experimental Validation and Racing." American Control Conference.
2007, pp. 2296–2301. doi:10.1109/ACC.2007.4282788

See Also
Functions
lateralControllerStanley

Objects
pathPlannerRRT

Topics
“Coordinate Systems in Automated Driving System Toolbox”

Introduced in R2018b

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-12

Multi Object Tracker
Create and manage tracks of multiple objects
Library: Automated Driving System Toolbox

Description
The Multi Object Tracker block creates and manages the tracks of moving objects. The
block initializes, confirms, predicts, corrects, and deletes tracks. Inputs to the tracker are
detection reports generated by the Radar Detection Generator and Vision Detection
Generator blocks. The tracker accepts detections from multiple sensors. Detections are
assigned to tracks using a global nearest neighbor (GNN) criterion. A detection is
assigned to only one track and when no assignment is possible, the tracker creates a new
track.

A new track usually starts in a ‘Tentative’ state. If enough detections are assigned to the
track, its status shifts to ‘Confirmed’. When a track is confirmed, you have confidence that
it represents a real object. If detections are not added to the track within a specifiable
number of updates, the track can be deleted. The tracker also optimally estimates the
state vector and state vector covariance matrix for each track using a Kalman filter.

Ports

Input
Detections — Detection list
structure input via Simulink bus

Detection list, specified as a structure input via a Simulink bus. See “Getting Started with
Buses” (Simulink). The structure has the form:

 Multi Object Tracker

2-13

Field Description Type
NumDetections Number of detections integer
IsValidTime False when updates are

requested at times that are
between block invocation
intervals.

Boolean

Detection structures array of object detection
structures. The first
NumDetections of these
are actual detections.

The definitions of the object detection structures are found in the Detections output port
descriptions of the Radar Detection Generator and Vision Detection Generator blocks.

Note The object detection structure contains a Time field. The time tag of each object
detection must be less than or equal to the time of the current invocation of the block and
greater than the update time specified in the previous invocation of the block.

Prediction Time — Track update time
scalar

Track update time, specified as a scalar. The tracker updates all tracks to this time.
Update time must always increase with each invocation of the block. Units are in seconds.

Note The object detection structure contains a Time field. The time tag of each object
detection must be less than or equal to the time of the current invocation of the block and
greater than the update time in the previous invocation of the block.

Example: 6.5

Dependencies

To enable this port, set Prediction time source to Input port.

Cost Matrix — Generic input port
real-valued Nt-by-Nd matrix

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-14

Cost matrix, specified as a real-valued Nt-by-Nd matrix where Nt is the number of existing
tracks and Nd is the number of current detections. The rows of the cost matrix correspond
to the existing tracks. The columns correspond to the detections. Tracks are ordered as
they appear in the list of tracks in the alltracks output argument of the previous call to
updateTracks. For the first call to updateTracks or if there are no previous tracks,
assign the cost matrix a size of [0,Nd]. Note that the cost must be calculated so that
lower costs indicate a higher likelihood of assigning a detection to a track. You can use
Inf to prevent some detections being assigned to certain tracks.

Dependencies

To enable this port, select Enable cost matrix input.

Output
Confirmed Tracks — Confirmed tracks
structure output via Simulink bus

Confirmed tracks, output as structure via a Simulink bus (see “Getting Started with
Buses” (Simulink)). The fields of the structure are:

Field Description
NumTracks Number of tracks
Track structures Array of track structures of length set by

the Maximum number of
tracksparameter. Only the first NumTracks
of these are actual tracks.

The track structure is defined as:

Field Definition
TrackID Unique track identifier.
Time Time at which the track is updated. Units

are in seconds.
Age Number of updates since track

initialization.
State Updated state vector. The state vector is

specific to each type of Kalman filter.

 Multi Object Tracker

2-15

Field Definition
StateCovariance Updated state covariance matrix. The

covariance matrix is specific to each type of
Kalman filter.

IsConfirmed Confirmation status. Set to true if the
track is confirmed to be a real target.

IsCoasted Coasting status – true if the track has been
updated without a new detection.

ObjectClassID Integer value representing the object
classification. The value 0 represents a
classification of unknown. Nonzero
classifications apply only to confirmed
tracks.

ObjectAttributes Cell array of object attributes reported by
the sensor making the detection.

A track is confirmed if:

• The track passes the M-out-of-N test specified by the M and N for the M-out-of-N
confirmation parameter.

• The detection initiating the track has an ObjectClassID greater than zero.

Tentative Tracks — Tentative tracks
structure output via Simulink bus

Tentative tracks, output as a structure via Simulink bus (see “Getting Started with Buses”
(Simulink)). A track is tentative before it is confirmed.

This structure is the same as defined in the Confirmed Tracks port.

Dependencies

To enable this port, select Enable tentative tracks output.

All Tracks — All tracks
structure output via Simulink bus

Combined list of confirmed and tentative tracks, output as a structure via Simulink bus
(see “Getting Started with Buses” (Simulink)).

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-16

This structure is the same as defined in the Confirmed Tracks port.

Dependencies

To enable this port, select Enable all tracks output.

Parameters
Tracker Management

Filter initialization function name — Function to initialize tracking filter
initcvkf (default) | function name

Kalman filter initialization function, specified as a function name. The toolbox provides
several initialization functions. For an example of an initialization function, see
initcvekf

Threshold for assigning detections to tracks — Detection assignment
threshold
30.0 (default) | positive scalar

Detection assignment threshold, specified as a positive scalar. To assign a detection to a
track, the detection's normalized distance from the track must be less than the
assignment threshold. If some detections remain unassigned to tracks they should be
assigned to, then increase the threshold. If some detections are assigned to incorrect
tracks, decrease the threshold.

M and N for the M-out-of-N confirmation — Confirmation parameters for
track creation
[2,3] (default) | 2-element vector of positive integers

Confirmation parameters for track creation, specified as a two-element vector of positive
integers, [M,N]. A track is confirmed when at least M detections are assigned to the track
during the first N updates after track initialization. M must be less than or equal to N.

As a guide to setting N, consider the number of times you want the tracker to update
before a confirmation decision must be made. For example, if a tracker updates every .05
seconds, and you allow .5 seconds to make a confirmation decision, set N = 10. To set M,
take into account the probability that the sensors will detect objects. The probability of
detection depends on factors such as occlusion or clutter. You can reduce the value of M

 Multi Object Tracker

2-17

when tracks fail to be confirmed or increase M when too many false detections get formed
into tracks.
Example: [3,5]

Number of times a confirmed track is coasted — Coasting threshold for
track deletion
5 (default) | positive integer

Coasting threshold for track deletion, specified as a positive integer. A track coasts when
no detections are assigned to the track after one or more predict steps. If the number of
coasting steps exceeds this threshold, the track is deleted.
Example: 12

Maximum number of tracks — Maximum number of tracks
200 (default) | positive integer

Maximum number of tracks the block can process, specified as a positive integer.

Maximum number of sensors — Maximum number of sensors
20 (default) | positive integer

Maximum number of sensors the block can process, specified as a positive integer. This
value should be greater than or equal to the highest SensorIndex value used in the
detections input port.

Inputs and Outputs

Prediction time source — Source for prediction time
Input port (default) | Auto

Source for prediction time, specified as Input port or Auto. Select Input port to
allow update time input using the Prediction time input port. Otherwise, the update
time is automatically determined by the simulation clock managed by Simulink.
Example: Auto

Source of output bus name — Source of output bus name
Auto (default) | Property

Source of output bus name, specified as Auto or Property. If you choose Auto, the
block will automatically create a bus name. If you choose Property, specify the bus
name using the Specify an output bus name parameter.

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-18

Example: Property

Specify an output bus name — Name of output bus
character string

Name of output bus, specified as a character string.
Example: tracksbus

Dependencies

To enable this parameter, set the Source of output bus name parameter to Property.

Enable cost matrix input — Enable input port for cost matrix
off (default) | on

Select this check box to enable the input of a cost matrix using the Cost matrix input
port.

Enable tentative tracks output — Enable output port for tentative tracks
off (default) | on

Select this check box to enable the output of tentative tracks using the Tentative Tracks
output port.

Enable all tracks output — Enable output port for all tracks
off (default) | on

Select this check box to enable the output of all the tracks using the All Tracks output
port.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If
you want your block to run as compiled code, choose Code Generation. Compiled code
requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block
runs the underlying System object in MATLAB. You can change and execute your model
quickly. When you are satisfied with your results, you can then run the block using Code
Generation. Long simulations run faster than in interpreted execution. You can run

 Multi Object Tracker

2-19

repeated executions without recompiling. However, if you change any block parameters,
then the block automatically recompiles before execution.

When setting this parameter, you must take into account the overall model simulation
mode. The table shows how the Simulate using parameter interacts with the overall
simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid

Accelerator
Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink) from the Simulink
documentation.

See Also
Bird's-Eye Scope | multiObjectTracker

Introduced in R2017b

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-20

Radar Detection Generator
Create detection objects from radar measurements
Library: Automated Driving System Toolbox

Description
The Radar Detection Generator block generates detections from radar measurements
taken by a radar sensor mounted on an ego vehicle. Detections are derived from
simulated actor poses and are generated at intervals equal to the sensor update interval.
All detections are referenced to the coordinate system of the ego vehicle. The generator
can simulate real detections with added random noise and also generate false alarm
detections. A statistical model generates the measurement noise, true detections, and
false positives. The random numbers generated by the statistical model are controlled by
random number generator settings on the Measurements tab. You can use the Radar
Detection Generator to create input to a Multiobject Tracker block.

Ports

Input
Actors — Scenario actor poses
structure input via Simulink bus

Scenario actor poses, specified as a structure input via Simulink bus.

The structure has the form:

Field Description Type
NumActors Number of actors integer

 Radar Detection Generator

2-21

Field Description Type
Time False when updates are

requested at times between
block invocation intervals.

double scalar

Actor poses structures Array length NumActors of
actor poses structures

The actor poses structure is defined as:

Field Description
ActorID Unique actor identifier, specified as a scalar

positive integer.
Position Actor position vector, specified as real-

valued 1-by-3 vector. Units are in meters.
Velocity Actor velocity vector, specified as real-

valued 1-by-3 vector. If velocity is not
specified, the default value is [0 0 0].
Units are in meters per second.

Speed Speed of actor, specified as a real scalar.
When specified, the actor velocity is aligned
with the x-axis of the actor in the ego actor
coordinate system. You cannot specify both
Speed and Velocity. The default value is
0. Units are in meters per second.

Roll Roll angle of actor, specified as a real-
valued scalar. If roll is not specified, the
default value is 0. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-
valued scalar. If pitch is not specified, the
default value is 0. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-
valued scalar. If yaw is not specified, the
default value is 0. Units are in degrees.

• You cannot specify both Velocity and Speed simultaneously.

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-22

• The values of Position, Velocity, Speed, Roll, Pitch, and Yaw are defined with
respect to the ego coordinate system.

• See Actor and Vehicle for more precise definitions of the structure fields.

You can also specify this structure manually. You can omit many fields but you must
include ActorID and Position. All others will take default values.

Output
Detections — Detection list
structure output via Simulink bus

Radar sensor detections, output as structure via a Simulink bus. See “Getting Started
with Buses” (Simulink). The structure has the form:

Field Description Type
NumDetections Number of detections integer
IsValidTime False when updates are

requested at times that are
between block invocation
intervals.

Boolean

Detection structures array of object detection
structures of length set by
the Maximum number of
reported detections
parameter. Only
NumDetections of these
are actual detections.

The object detection structure contains these properties.

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor

 Radar Detection Generator

2-23

Property Definition
ObjectClassID Object classification
MeasurementParameters Parameters used by initialization functions

of nonlinear Kalman tracking filters
ObjectAttributes Additional information passed to tracker

• For Cartesian coordinates, Measurement and MeasurementNoise are reported in
the coordinate system specified by the Coordinate system used to report
detections parameter.

• For spherical coordinates, Measurement and MeasurementNoise are reported in the
spherical coordinate system based on the sensor Cartesian coordinate system.

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-24

Measurement and Measurement Noise

Coordinate system used to report
detections

Measurement and Measurement Noise
Coordinates

'Ego Cartesian' Coordinate dependence on Enable
range rate measurements

Enable range rate
measurements

Coordinates

true [x;y;z;vx;vy;vz]
false [x;y;z]

'Sensor Cartesian'

'Sensor spherical' Coordinate dependence on Enable
elevation angle measurements and
Enable range rate measurements

Enable
range rate
measureme
nts

Enable
elevation
angle
measureme
nts

Coordinates

true true [az;el;rng
;rr]

true false [az;rng;rr
]

false true [az;el;rng
]

false false [az;rng]

 Radar Detection Generator

2-25

MeasurementParameters

Parameter Definition
Frame Enumerated type indicating the frame used

to report measurements. When Frame is set
to 'rectangular', detections are
reported in Cartesian coordinates. When
Frame is set 'spherical', detections are
reported in spherical coordinates.

OriginPosition 3-D vector offset of the sensor origin from
the ego vehicle origin. The vector is derived
from the SensorLocation and Height
properties specified in the
radarDetectionGenerator.

Orientation Orientation of the radar sensor coordinate
system with respect to the ego vehicle
coordinate system. The orientation is
derived from the Yaw, Pitch, and Roll
properties of the
radarDetectionGenerator.

HasVelocity Indicates whether measurements contain
velocity or range rate components.

HasElevation Indicates whether measurements contain
elevation components.

The ObjectAttributes property of each detection is a structure with these fields.

Field Definition
TargetIndex Identifier of the actor, ActorID, that

generated the detection. For false alarms,
this value is negative.

SNR Signal-to-noise ratio of the detection. Units
are in dB.

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-26

Parameters
Parameters - Sensor Identification

Unique identifier of sensor — Unique sensor identifier
1 (default) | positive integer

Unique sensor identifier, specified as a positive integer. The sensor identifier distinguishes
detections that come from different sensors in a multi-sensor system.
Example: 5

Required interval between sensor updates (s) — Required time interval
0.1 (default) | positive scalar

Required time interval between sensor updates, specified as a positive scalar. The value of
this parameter must be an integer multiple of the Actors input port data interval.
Updates requested from the sensor between update intervals contain no detections. Units
are in seconds.

Parameters - Sensor Extrinsics

Sensor's (x,y) position (m) — Location of the radar sensor center
[3.4 0] (default) | real-valued 1-by-2 vector

Location of the radar sensor center, specified as a real-valued 1-by-2 vector. The Sensor's
(x,y) position (m) and Sensor's height (m) parameters define the coordinates of the
radar sensor with respect to the ego vehicle coordinate system. The default value
corresponds to a radar mounted at the center of the front grill of a sedan. Units are in
meters.

Sensor's height (m) — Radar sensor height above the ground plane
0.2 (default) | positive scalar

Radar sensor height above the ground plane, specified as a positive scalar. The height is
defined with respect to the vehicle ground plane. The Sensor's (x,y) position (m) and
Sensor's height (m) parameters define the coordinates of the radar sensor with respect
to the ego vehicle coordinate system. The default value corresponds to a radar mounted
at the center of the front grill of a sedan. Units are in meters.
Example: 0.25

 Radar Detection Generator

2-27

Yaw angle of sensor mounted on ego vehicle (deg) — Yaw angle of sensor
0 (default) | scalar

Yaw angle of radar sensor, specified as a scalar. Yaw angle is the angle between the center
line of the ego vehicle and the downrange axis of the radar sensor. A positive yaw angle
corresponds to a clockwise rotation when looking in the positive direction of the z-axis of
the ego vehicle coordinate system. Units are in degrees.
Example: -4.0

Pitch angle of sensor mounted on ego vehicle (deg) — Pitch angle of
sensor
0 (default) | scalar

Pitch angle of sensor, specified as a scalar. The pitch angle is the angle between the
downrange axis of the radar sensor and the x-y plane of the ego vehicle coordinate
system. A positive pitch angle corresponds to a clockwise rotation when looking in the
positive direction of the y-axis of the ego vehicle coordinate system. Units are in degrees.
Example: 3.0

Roll angle of sensor mounted on ego vehicle (deg) — Roll angle of sensor
0 (default) | scalar

Roll angle of the radar sensor, specified as a scalar. The roll angle is the angle of rotation
of the downrange axis of the radar around the x-axis of the ego vehicle coordinate system.
A positive roll angle corresponds to a clockwise rotation when looking in the positive
direction of the x-axis of the coordinate system. Units are in degrees.

Parameters - Port Settings

Source of output bus name — Source of output bus name
Auto (default) | Property

Source of output bus name, specified as Auto or Property. If you choose Auto, the
block will automatically create a bus name. If you choose Property, specify the bus
name using the Specify an output bus name parameter.
Example: Property

Specify an output bus name — Name of output bus
character string

Name of output bus, specified as a character string.

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-28

Example: radarbus
Dependencies

To enable this parameter, set the Source of output bus name parameter to Property.

Parameters - Detection Reporting

Maximum number of reported detections — Maximum number of reported
detections
50 (default) | positive integer

Maximum number of detections reported by the sensor, specified as a positive integer.
Detections are reported in order of increasing distance from the sensor until the
maximum number is reached.
Example: 100

Coordinate system used to report detections — Coordinate system of
reported detections
Ego Cartesian (default) | Sensor Cartesian | Sensor Spherical

Coordinate system of reported detections, specified as one of these values:

• Ego Cartesian — detections are reported in the ego vehicle Cartesian coordinate
system.

• Sensor Cartesian— detections are reported in the sensor Cartesian coordinate
system.

• Sensor spherical — detections are reported in a spherical coordinate system. This
coordinate system is centered at the radar and aligned with the orientation of the
radar on the ego vehicle.

Example: Sensor spherical

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If
you want your block to run as compiled code, choose Code Generation. Compiled code
requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block
runs the underlying System object in MATLAB. You can change and execute your model

 Radar Detection Generator

2-29

quickly. When you are satisfied with your results, you can then run the block using Code
Generation. Long simulations run faster than in interpreted execution. You can run
repeated executions without recompiling. However, if you change any block parameters,
then the block automatically recompiles before execution.

When setting this parameter, you must take into account the overall model simulation
mode. The table shows how the Simulate using parameter interacts with the overall
simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid

Accelerator
Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink) from the Simulink
documentation.

Measurements - Accuracy Settings

Azimuthal resolution of radar (deg) — Azimuth resolution of radar
4.0 (default) | positive scalar

Azimuth resolution of the radar, specified as a positive scalar. The azimuth resolution
defines the minimum separation in azimuth angle at which the radar can distinguish two
targets. The azimuth resolution is typically the 3dB-downpoint in azimuth angle
beamwidth of the radar. Units are in degrees.
Example: 6.5

Elevation resolution of radar (deg) — Elevation resolution of radar
10.0 (default) | positive scalar

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-30

Elevation resolution of the radar, specified as a positive scalar. The elevation resolution
defines the minimum separation in elevation angle at which the radar can distinguish two
targets. The elevation resolution is typically the 3dB-downpoint in elevation angle
beamwidth of the radar. Units are in degrees.
Example: 3.5
Dependencies

To enable this parameter, select the Enable elevation angle measurements check box.

Range resolution of radar (m) — Range resolution of radar
2.5 (default) | positive scalar

Range resolution of the radar, specified as a positive scalar. The range resolution defines
the minimum separation in range at which the radar can distinguish between two targets.
Units are in meters.
Example: 5.0

Range rate resolution of radar (m/s) — Range rate resolution of the radar
0.5 (default) | positive scalar

Range rate resolution of the radar, specified as a positive scalar. The range rate resolution
defines the minimum separation in range rate at which the radar can distinguish between
two targets. Units are in meters per second.
Example: 0.75
Dependencies

To enable this parameter, select the Enable range rate measurements check box.

Measurements - Bias Settings

Fractional azimuthal bias component of radar — Azimuth bias fraction
0.1 (default) | nonnegative scalar

Azimuth bias fraction of the radar, specified as a nonnegative scalar. The azimuth bias is
expressed as a fraction of the azimuth resolution specified in the Azimuthal resolution
of radar (deg) parameter. Units are dimensionless.
Example: 0.3

Fractional elevation bias component of radar — Elevation bias fraction
0.1 (default) | nonnegative scalar

 Radar Detection Generator

2-31

Elevation bias fraction of the radar, specified as a nonnegative scalar. The elevation bias is
expressed as a fraction of the elevation resolution specified in the Elevation resolution
of radar (deg) parameter. Units are dimensionless.
Example: 0.2

Dependencies

To enable this parameter, select the Enable elevation angle measurements check box.

Fractional range bias component of radar — Range bias fraction
0.05 (default) | nonnegative scalar

Range bias fraction of the radar, specified as a nonnegative scalar. Range bias is
expressed as a fraction of the range resolution specified in the Range resolution of
radar (m) parameter. Units are dimensionless.
Example: 0.15

Fractional range rate bias component of radar — Range rate bias fraction
of the radar
0.05 (default) | nonnegative scalar

Range rate bias fraction of the radar, specified as a nonnegative scalar. Range rate bias is
expressed as a fraction of the range rate resolution specified in Range rate resolution
of radar (m) parameter. Units are dimensionless.
Example: 0.2

Dependencies

To enable this parameter, select the Enable range rate measurements check box.

Measurements - Detector Settings

Total angular field of view for radar (deg) — Field of view of radar
sensor
[20 5] (default) | real-valued 1-by-2 vector of positive values

Field of view of radar sensor, specified as a real-valued 1-by-2 vector of positive values,
[azfov elfov]. The field of view defines the angular extent spanned by the sensor.
Each component must lie in the interval (0,180]. Targets outside of the field of view of the
radar are not detected. Units are in degrees.
Example: [14 7]

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-32

Maximum detection range (m) — Maximum detection range
150 (default) | positive scalar

Maximum detection range, specified as a positive scalar. The radar cannot detect a target
beyond this range. Units are in meters.
Example: 250

Minimum and maximum range rates that can be reported — Minimum and
maximum detection range rates
[-100 100] (default) | real-valued 1-by-2 vector

Minimum and maximum detection range rates, specified as a real-valued 1-by-2 vector.
The radar cannot detect a target outside of this range rate interval. Units are in meters
per second.
Example: [-200 200]

Dependencies

To enable this parameter, select the Enable range rate measurements check box.

Detection probability — Probability of detecting a target
0.9 (default) | positive scalar less than or equal to 1

Probability of detecting a target, specified as a positive scalar less than or equal to one.
This quantity defines the probability of detecting target that has a radar cross-section
specified by the Radar cross section at which detection probability is achieved
(dBsm) parameter at the reference detection range specified by the Range where
detection probability is achieved (m) parameter.
Example: 0.95

Rate at which false alarms are reported — False alarm rate
1e-6 (default) | positive scalar

False alarm rate within a radar resolution cell, specified as a positive scalar in the range
[10–7, 10–3]. Units are dimensionless.
Example: 1e-5

Range where detection probability is achieved (m): — Reference range
for given probability of detection
100 (default) | positive scalar

 Radar Detection Generator

2-33

Reference range for a given probability of detection, specified as a positive scalar. The
reference range is the range when a target having a radar cross-section specified by
Radar cross section at which detection probability is achieved (dBsm) is detected
with a probability of specified by Detection probability. Units are in meters.
Example: 150

Radar cross section at which detection probability is achieved
(dBsm) — Reference radar cross-section for given probability of detection
0.0 (default) | nonnegative scalar

Reference radar cross-section (RCS) for given probability of detection, specified as a
nonnegative scalar. The reference RCS is the value at which a target is detected with
probability specified by Detection probability. Units are in dBsm.
Example: 2.0

Measurements - Measurement Settings

Enable elevation angle measurements — Enable radar to measure elevation
off (default) | on

Select this check box to model a radar that can measure target elevation angles.

Enable range rate measurements — Enable radar to measure range rate
on (default) | off | on

Select this check box to model a radar that can measure target range rate.

Add noise to measurements — Enable adding noise to radar sensor
measurements
on (default) | off

Select this check box to add noise to radar sensor measurements. Otherwise, the
measurements are noise-free. The MeasurementNoise property of each detection is
always computed and is not affected by the value you specify for the Add noise to
measurements parameter. By leaving this check box off, you can pass the sensor's
ground truth measurements into a Multi Object Tracker block.

Enable false detections — Enable creating false alarm radar detections
on (default) | off

Select this check box to enable reporting false alarm radar measurements. Otherwise,
only actual detections are reported.

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-34

Random Number Generator Settings

Select method to specify initial seed — Method to specify random number
generator seed
Repeatable (default) | Specify seed | Nonrepeatable

Method to set the random number generator seed, specified as Repeatable, Specify
seed, or Nonrepeatable. When set to Specify seed, the value set in the
InitialSeed parameter is used. When set to Repeatable, a random initial seed is
generated for the first simulation and then reused for all subsequent simulations. You can,
however, change the seed by issuing a clear all command. When set to
Nonrepeatable, a new initial seed is generated each time the simulation runs.
Example: Specify seed

Initial seed — Random number generator seed
0 (default) | nonnegative integer less than 232

Random number generator seed, specified as a nonnegative integer less than 232.
Example: 2001

Dependencies

To enable this parameter, set the Random Number Generator Settings parameter to
Specify seed.

Actor Profiles

Select method to specify actor profiles — method to specify actor profiles
Parameters (default) | MATLAB expression

Method to specify actor profiles, specified as Parameters or MATLAB expression.
When you select Parameters, you set the actor profiles using the parameters in the
Actor Profiles tab. When you select MATLAB expression, set the actor profiles using
the MATLAB expression for actor profiles parameter.

MATLAB expression for actor profiles — MATLAB expression for actor
profiles
struct('ClassID',0,'Length',4.7,'Width',1.8,'Height',
1.4,'OriginOffset',[-1.35,0,0]) (default) | MATLAB structure | MATLAB
structure array

 Radar Detection Generator

2-35

MATLAB expression for actor profiles, specified as a MATLAB structure or MATLAB
structure array.
Example: struct('ClassID',5,'Length',5.0,'Width',2,'Height',
2,'OriginOffset',[-1.55,0,0])

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Matlab expression.

Unique identifier for actors — Scenario-defined actor identifier
[] (default) | positive integer | length-L vector of unique positive integers

Scenario-defined actor identifier, specified as a positive integer or length-L vector of
unique positive integers. L must equal the number of actors input via the Actor input
port. The vector elements must match ActorID values of the actors. You can specify
Unique identifier for actors as []. In this case, the same actor profile parameters apply
to all actors.
Example: [1,2]

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

User-defined integer to classify actors — User-defined classification
identifier
0 (default) | integer | length-L vector of integers

User-defined classification identifier, specified as an integer or length-L vector of
integers. When Unique identifier for actors is a vector, this parameter is a vector of the
same length with elements in one-to-one correspondence to the actors in Unique
identifier for actors. When Unique identifier for actors is empty, [], you must specify
this parameter as a single integer whose value applies to all actors.
Example: 2

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-36

Length of actors cuboids (m) — Length of cuboid
4.7 (default) | positive scalar | length-L vector of positive values

Length of cuboid, specified as a positive scalar or length-L vector of positive values. When
Unique identifier for actors is a vector, this parameter is a vector of the same length
with elements in one-to-one correspondence to the actors in Unique identifier for
actors. When Unique identifier for actors is empty, [], you must specify this
parameter as a positive scalar whose value applies to all actors. Units are in meters.
Example: 6.3

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Width of actors cuboids (m) — Width of cuboid
4.7 (default) | positive scalar | length-L vector of positive values

Width of cuboid, specified as a positive scalar or length-L vector of positive values. When
Unique identifier for actors is a vector, this parameter is a vector of the same length
with elements in one-to-one correspondence to the actors in Unique identifier for
actors. When Unique identifier for actors is empty, [], you must specify this
parameter as a positive scalar whose value applies to all actors. Units are in meters.
Example: 4.7

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Height of actors cuboids (m) — Height of cuboid
4.7 (default) | positive scalar | length-L vector of positive values

Height of cuboid, specified as a positive scalar or length-L vector of positive values. When
Unique identifier for actors is a vector, this parameter is a vector of the same length
with elements in one-to-one correspondence to the actors in Unique identifier for
actors. When Unique identifier for actors is empty, [], you must specify this
parameter as a positive scalar whose value applies to all actors. Units are in meters.
Example: 2.0

 Radar Detection Generator

2-37

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Rotational center of actors from bottom center (m) — Rotational center
of the actor
{ [-1.35, 0, 0] } (default) | length-L cell array of real-valued 1-by-3 vectors

Rotational center of the actor, specified as a length-L cell array of real-valued 1-by-3
vectors. Each vector represents the offset of the rotational center of the actor from the
bottom-center of the actor. For vehicles, the offset corresponds to the point on the ground
beneath the center of the rear axle. When Unique identifier for actors is a vector, this
parameter is a cell array of vectors with cells in one-to-one correspondence to the actors
in Unique identifier for actors. When Unique identifier for actors is empty, [], you
must specify this parameter as a cell array of one element containing the offset vector
whose values apply to all actors. Units are in meters.
Example: [-1.35, .2, .3]

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Radar cross section pattern (dBsm) — Radar cross-section
{[10,10;10,10]} (default) | real-valued Q-by-P matrix | length-L cell array of real-
valued Q-by-P matrices

Radar cross-section (RCS) of actor, specified as a real-valued Q-by-P matrix or length-L
cell array of real-valued Q-by-P matrices. Q is the number of elevation angles specified by
the corresponding cell in the Elevation angles defining RCSPattern (deg) parameter.
P is the number of azimuth angles specified by the corresponding cell in Azimuth angles
defining RCSPattern (deg) property. When Unique identifier for actors is a vector,
this parameter is a cell array of matrices with cells in one-to-one correspondence to the
actors in Unique identifier for actors. Q and P can vary in the cell array. When Unique
identifier for actors is empty, [], you must specify this parameter as a cell array with
one element containing a matrix whose values apply to all actors. Units are in dBsm.
Example: [10 14 10; 9 13 9]

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-38

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Azimuth angles defining RCSPattern (deg) — Azimuth angles of radar cross-
section pattern
{[-180 180]} (default) | length-L cell array of real-valued P-length vectors

Azimuth angles of radar cross-section pattern, specified as a length-L cell array of real-
valued P-length vectors . Each vector represents the azimuth angles of the P-columns of
the radar cross section specified in Radar cross section pattern (dBsm). When
Unique identifier for actors is a vector, this parameter is a cell array of vectors with
cells in one-to-one correspondence to the actors in Unique identifier for actors. P can
vary in the cell array. When Unique identifier for actors is empty, [], you must specify
this parameter as a cell array with one element containing a vector whose values apply to
all actors. Units are in degrees. Azimuth angles lie in the range -180° to 180° and must be
in strictly increasing order.

When the radar cross sections specified in the cells of Radar cross section pattern
(dBsm) all have the same dimensions, you need only specify a cell array with one
element containing the azimuth angle vector.
Example: [-90:90]
Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Elevation angles defining RCSPattern (deg) — Elevation angles of radar
cross-section pattern
{[-90 90]} (default) | length-L cell array of real-valued Q-length vectors

Elevation angles of radar cross-section pattern, specified as a length-L cell array of real-
valued Q-length vectors . Each vector represent the elevation angles of the Q-columns of
the radar cross section specified in Radar cross section pattern (dBsm). When
Unique identifier for actors is a vector, this parameter is a cell array of vectors with
cells in one-to-one correspondence to the actors in Unique identifier for actors. Q can
vary in the cell array. When Unique identifier for actors is empty, [], you must specify
this parameter as a cell array with one element containing a vector whose values apply to
all actors. Units are in degrees. Elevation angles lie in the range -90° to 90° and must be
in strictly increasing order.

 Radar Detection Generator

2-39

When the radar cross sections that are specified in the cells of Radar cross section
pattern (dBsm) all have the same dimensions, you need only specify a cell array with
one element containing an elevation angle vector.
Example: [-25:25]

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

See Also
Bird's-Eye Scope | Detection Concatenation | Multiobject Tracker | Vision Detection
Generator | radarDetectionGenerator

Topics
“Getting Started with Buses” (Simulink)

Introduced in R2017b

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-40

Vision Detection Generator
Detect objects and lanes from visual measurements
Library: Automated Driving System Toolbox

Description
The Vision Detection Generator block generates detections from camera measurements
taken by a vision sensor mounted on an ego vehicle. Detections are derived from
simulated actor poses and are generated at intervals equal to the sensor update interval.
All detections are referenced to the coordinate system of the ego vehicle. The generator
can simulate real detections with added random noise and also generate false positive
detections. A statistical model generates the measurement noise, true detections, and
false positives. The random numbers generated by the statistical model are controlled by
random number generator settings on the Measurements tab. You can use the Vision
Detection Generator to create input to a Multiobject Tracker block.

Ports

Input
Actors — Scenario actor poses
structure input via Simulink bus

Scenario actor poses, specified as a structure input via Simulink bus. You can also create
this structure manually.

The structure has the form:

Field Description Type
NumActors Number of actors integer

 Vision Detection Generator

2-41

Field Description Type
Time False when updates are

requested at times between
block invocation intervals.

double scalar

Actor pose structures Array length NumActors of
actor pose structures

The actor pose structure is defined as:

Field Description
ActorID Unique actor identifier, specified as a scalar

positive integer.
Position Actor position vector, specified as real-

valued 1-by-3 vector. Units are in meters.
Velocity Actor velocity vector, specified as real-

valued 1-by-3 vector. If velocity is not
specified, the default value is [0 0 0].
Units are in meters per second.

Speed Speed of actor, specified as a real scalar.
When specified, the actor velocity is aligned
with the x-axis of the actor in the ego actor
coordinate system. You cannot specify both
Speed and Velocity. The default value is
0. Units are in meters per second.

Roll Roll angle of actor, specified as a real-
valued scalar. If roll is not specified, the
default value is 0. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-
valued scalar. If pitch is not specified, the
default value is 0. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-
valued scalar. If yaw is not specified, the
default value is 0. Units are in degrees.

• You cannot specify both Velocity and Speed simultaneously.

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-42

• The values of Position, Velocity, Speed, Roll, Pitch, and Yaw are defined with
respect to the ego coordinate system.

• See Actor and Vehicle for more precise definitions of the structure fields.

You can also specify this structure manually. You can omit many fields but you must
include ActorID and Position. All other fields have default values.

Dependencies

To enable this input port, set the Types of detections generated by sensor parameter
to Objects only, Lanes with occlusion, or Lanes and objects.

Lane Boundaries — Lane boundaries
array of lane boundary structures

Lane boundaries, specified as an array of lane boundary structures defined in the table:

 Vision Detection Generator

2-43

Lane Boundary Structure Fields

Field Description
Coordinates Lane boundary coordinates, specified as a

real-valued N-by-3 matrix. Lane boundary
coordinates define the position of points on
the boundary at distances specified by
XDistance. In addition, a set of boundary
coordinates are inserted into the matrix at
zero distance. Units are in meters.

Curvature Lane boundary curvature at each row of the
Coordinates matrix, specified as a real-
valued N-by-1 vector. N is the number of
rows in the Coordinates matrix. Units are
in degrees/m.

CurvatureDerivative Derivative of lane boundary curvature at
each row of the Coordinates matrix,
specified as a real-valued N-by-1 vector. N
is the number of rows in the Coordinates
matrix. Units are in degrees/m. Units are in
degrees/m2.

HeadingAngle Initial lane boundary heading, specified as a
scalar. The heading angle of the lane
boundary is relative to the ego car heading.
Units are in degrees.

LateralOffset Distance of the lane boundary from the ego
vehicle position, specified as a scalar. An
offset to a lane boundary to the left of the
ego is positive. An offset to the right of the
ego vehicle is negative. Units are in meters.

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-44

BoundaryType Type of lane boundary marking, specified as
one of the following:

• 'Unmarked' — No physical lane marker
exists

• 'Solid' — Single unbroken line
• 'Dashed' — Single line of dashed lane

markers
• 'DoubleSolid' — two unbroken lines
• 'DoubleDashed' — Two dashed lines
• 'SolidDashed' — Solid line on the left

and a dashed line on the right
• 'DashedSolid' — Dashed line on the

left and a solid line on the right
Strength Strength of the lane boundary marking,

specified as a scalar from 0 through 1. A
value of 0 corresponds to a marking that is
not visible and a value of 1 corresponds to a
marking that is completely visible. Values in
between are partially visible.

Width Lane boundary width, specified as a
positive scalar. In a double-line lane marker,
the same width is used for both lines and
the space between lines. Units are in
meters.

Length Length of dash in dashed lines, specified as
a positive scalar. In a double-line lane
marker, the same length is used for both
lines.

Space Length of space between dashes in dashed
lines, specified as a positive scalar. In a
dashed double-line lane marker the same
space is used for both lines

 Vision Detection Generator

2-45

Dependencies

To enable this input port, set the Types of detections generated by sensor parameter
to Lanes only, Lanes only, Lanes with occlusion, or Lanes and objects.

Output
Object Detections — Detection list
structure output via Simulink bus

Vision sensor detections, output as structure via a Simulink bus. See “Getting Started
with Buses” (Simulink). The structure has the form:

Field Description Type
NumDetections Number of detections integer
IsValidTime False when updates are

requested at times that are
between block invocation
intervals.

Boolean

Detection structures array of object detection
structures of length set by
the Maximum number of
reported detections
parameter. Only
NumDetections of these
detections are actual
detections.

The object detection structure contains these properties.

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-46

Property Definition
MeasurementParameters Parameters used by initialization functions

of nonlinear Kalman tracking filters
ObjectAttributes Additional information passed to tracker

• For Cartesian coordinates, Measurement and MeasurementNoise are reported in
the coordinate system specified by the Coordinate system used to report
detections parameter.

• For spherical coordinates, Measurement and MeasurementNoise are reported in the
spherical coordinate system based on the sensor Cartesian coordinate system.
MeasurementParameters are reported in sensor Cartesian coordinates.

 Vision Detection Generator

2-47

Measurement and Measurement Noise

Coordinate system used to report
detections

Measurement and Measurement Noise
Coordinates

'Ego Cartesian' Coordinate Dependence on Enable
range rate measurements

Enable range rate
measurements

Coordinates

true [x;y;z;vx;vy;vz]
false [x;y;z]

'Sensor Cartesian'

'Sensor Spherical' Coordinate dependence on Enable
elevation angle measurements and
Enable range rate measurements

Enable
range rate
measureme
nts

Enable
elevation
angle
measureme
nts

Coordinates

true true [az;el;rng
;rr]

true false [az;rng;rr
]

false true [az;el;rng
]

false false [az;rng]

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-48

MeasurementParameters

Parameter Definition
Frame Enumerated type indicating the frame used

to report measurements. Frame is always
set to 'rectangular', because the Vision
Detection Generator reports detections in
Cartesian coordinates.

OriginPosition 3-D vector offset of the sensor origin from
the ego vehicle origin. The vector is derived
from the Sensor's (x,y) position (m) and
Sensor's height (m) properties specified
in the Vision Detection Generator.

Orientation Orientation of the vision sensor coordinate
system with respect to the ego vehicle
coordinate system. The orientation is
derived from the Yaw angle of sensor
mounted on ego vehicle (deg), Pitch
angle of sensor mounted on ego vehicle
(deg), and Roll angle of sensor mounted
on ego vehicle (deg) parameters of the
Vision Detection Generator.

HasVelocity Indicates whether measurements contain
velocity.

The ObjectAttributes property of each detection is a structure with these fields.

Field Definition
TargetIndex Identifier of the actor, ActorID, that

generated the detection. For false alarms,
this value is negative.

SNR Signal-to-noise ratio of the detection. Units
are in dB.

Dependencies

To enable this output port, set the Types of detections generated by sensor parameter
to Objects only, Lanes with occlusion, or Lanes and objects.

 Vision Detection Generator

2-49

Lane Detections — Lane boundary detections
array of lane boundary detection structures

Lane boundary detections, returned as an array of lane boundary detection structures.
The fields of the structure are:

Lane Boundary Detection Structure

Field Description
Time Lane detection time
SensorIndex Unique identifier of sensor
LaneBoundaries Array of clothoidLaneBoundary objects.

Dependencies

To enable this output port, set the Types of detections generated by sensor parameter
to Lanes only, Lanes with occlusion, or Lanes and objects.

Parameters
Main Tab

Unique identifier of sensor — Unique sensor identifier
1 (default) | positive integer

Unique sensor identifier, specified as a positive integer. The sensor identifier distinguishes
detections that come from different sensors in a multi-sensor system.
Example: 5

Types of detections generated by sensor — Select the types of detections
Objects only (default) | Lanes only | Lanes with occlusion | Lanes and
objects

Types of detections generated by the sensor, specified as Objects only, Lanes only,
Lanes with occlusion, or Lanes and objects.

• When set to Objects only, no road information is used to occlude actors.
• When set to Lanes only, no actor information is used to detect lanes.

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-50

• When set to Lanes with occlusion, actors in the camera field of view can impair
the sensor ability to detect lanes.

• When set to Lanes and objects, the sensor generates object both object detections
and occluded lane detections.

Required interval between sensor updates (s) — Required time interval
0.1 (default) | positive scalar

Required time interval between sensor updates, specified as a positive scalar. The value of
this parameter must be an integer multiple of the Actors input port data interval.
Updates requested from the sensor between update intervals contain no detections. Units
are in seconds.

Required interval between lane detections updates (s) — Time interval
between lane detection updates
0.1 (default) | positive scalar

Required time interval between lane detection updates, specified as a positive scalar. The
vision detection generator is called at regular time intervals. The vision detector
generates new lane detections at intervals defined by this parameter which must be an
integer multiple of the simulation time interval. Updates requested from the sensor
between update intervals contain no lane detections. Units are in seconds.

Parameters - Sensor Extrinsics

Sensor's (x,y) position (m) — Location of the vision sensor center
[3.4 0] (default) | real-valued 1-by-2 vector

Location of the vision sensor center, specified as a real-valued 1-by-2 vector. The Sensor's
(x,y) position (m) and Sensor's height (m) parameters define the coordinates of the
vision sensor with respect to the ego vehicle coordinate system. The default value
corresponds to a forward-facing vision sensor mounted a sedan dashboard. Units are in
meters.

Sensor's height (m) — Vision sensor height above the ground plane
0.2 (default) | positive scalar

Vision sensor height above the ground plane, specified as a positive scalar. The height is
defined with respect to the vehicle ground plane. The Sensor's (x,y) position (m) and
Sensor's height (m) parameters define the coordinates of the vision sensor with respect
to the ego vehicle coordinate system. The default value corresponds to a forward-facing
vision sensor mounted a sedan dashboard. Units are in meters.

 Vision Detection Generator

2-51

Example: 0.25

Yaw angle of sensor mounted on ego vehicle (deg) — Yaw angle of sensor
0 (default) | scalar

Yaw angle of vision sensor, specified as a scalar. Yaw angle is the angle between the
center line of the ego vehicle and the optical axis of the camera. A positive yaw angle
corresponds to a clockwise rotation when looking in the positive direction of the z-axis of
the ego vehicle coordinate system. Units are in degrees.
Example: -4.0

Pitch angle of sensor mounted on ego vehicle (deg) — Pitch angle of
sensor
0 (default) | scalar

Pitch angle of sensor, specified as a scalar. The pitch angle is the angle between the
optical axis of the camera and the x-y plane of the ego vehicle coordinate system. A
positive pitch angle corresponds to a clockwise rotation when looking in the positive
direction of the y-axis of the ego vehicle coordinate system. Units are in degrees.
Example: 3.0

Roll angle of sensor mounted on ego vehicle (deg) — Roll angle of sensor
0 (default) | scalar

Roll angle of the vision sensor, specified as a scalar. The roll angle is the angle of rotation
of the optical axis of the camera around the x-axis of the ego vehicle coordinate system. A
positive roll angle corresponds to a clockwise rotation when looking in the positive
direction of the x-axis of the coordinate system. Units are in degrees.

Parameters - Output Port Settings

Source of object bus name — Source of object bus name
Auto (default) | Property

Source of object bus name, specified as Auto or Property. If you choose Auto, the block
automatically creates a bus name. If you choose Property, specify the bus name using
the Specify an object bus name parameter.
Example: Property

Source of output lane bus name — Source of object bus name
Auto (default) | Property

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-52

Source of output lane bus name, specified as Auto or Property. If you choose Auto, the
block will automatically create a bus name. If you choose Property, specify the bus
name using the Specify an object bus name parameter.
Example: Property

Object bus name — Name of object bus
character string

Object bus name, specified as a character string.
Example: visionbus

Dependencies

To enable this parameter, set the Source of object bus name parameter to Property.

Specify an output lane bus name — Name of output lane bus name
character string

output lane bus name, specified as a character string.
Example: lanebus

Dependencies

To enable this parameter, set the Source of output lane bus name parameter to
Property.

Parameters - Detection Reporting

Maximum number of reported detections — Maximum number of reported
detections
50 (default) | positive integer

Maximum number of detections reported by the sensor, specified as a positive integer.
Detections are reported in order of increasing distance from the sensor until the
maximum number is reached.
Example: 100

Dependencies

To enable this parameter, set the Types of detections generated by sensor parameter
to Objects only or Lanes and objects.

 Vision Detection Generator

2-53

Maximum number of reported lanes — Maximum number of reported
detections
30 (default) | positive integer

Maximum number of reported lanes, specified as a positive integer.
Example: 100

Dependencies

To enable this parameter, set the Types of detections generated by sensor parameter
to Lanes only, Lanes with occlusion, or Lanes and objects.

Coordinate system used to report detections — Coordinate system of
reported detections
Ego Cartesian (default) | Sensor Cartesian | Sensor Spherical

Coordinate system of reported detections, specified as one of these values:

• Ego Cartesian — detections are reported in the ego vehicle Cartesian coordinate
system.

• Sensor Cartesian— detections are reported in the sensor Cartesian coordinate
system.

Example: Sensor Cartesian

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If
you want your block to run as compiled code, choose Code Generation. Compiled code
requires time to compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block
runs the underlying System object in MATLAB. You can change and execute your model
quickly. When you are satisfied with your results, you can then run the block using Code
Generation. Long simulations run faster than in interpreted execution. You can run
repeated executions without recompiling. However, if you change any block parameters,
then the block automatically recompiles before execution.

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-54

When setting this parameter, you must take into account the overall model simulation
mode. The table shows how the Simulate using parameter interacts with the overall
simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using
Simulate using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid

Accelerator
Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is
compiled.

All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink) from the Simulink
documentation.

Measurements - Settings

Maximum detection range (m) — Maximum detection range
150 (default) | positive scalar

Maximum detection range, specified as a positive scalar. The vision sensor cannot detect
objects beyond this range. Units are in meters.
Example: 250

Measurements - Object Detector Settings

Bounding box accuracy (pixels) — Bounding box accuracy
5 (default) | positive scalar

Bounding box accuracy, specified as a positive scalar. This quantity defines the accuracy
with which the detector can match a bounding box to a target. Units are in pixels.
Example: 9

 Vision Detection Generator

2-55

Smoothing filter noise intensity (m/s²) — Noise intensity used for
filtering position and velocity measurements
5 (default) | positive scalar

Noise intensity used for filtering position and velocity measurements, specified as a
positive scalar. Noise intensity defines the standard deviation of the process noise of the
internal constant-velocity Kalman filter used in a vision sensor. The filter models the
process noise using a piecewise-constant white noise acceleration model. Noise intensity
is typically of the order of the maximum acceleration magnitude expected for a target.
Units are in m/s2.
Example: 2

Maximum detectable object speed (m/s) — Maximum detectable object speed
50 (default) | positive scalar

Maximum detectable object speed, specified as a non-negative scalar. Units are in meters
per second.
Example: 20

Maximum allowed occlusion for detector — Maximum detectable object
speed
0.5 (default) | scalar in the range [0 1)

Maximum allowed occlusion of an object, specified as a scalar in the range [0 1).
Occlusion is the fraction of the total surface area of an object not visible to the sensor. A
value of one indicates that the object is fully occluded. Units are dimensionless.
Example: 0.2

Minimum detectable image size of an object — Minimum height and width
of an object
[15,15] (default) | 1-by-2 vector of positive values

Minimum height and width of an object that the vision sensor detects within an image,
specified as a [minHeight,minWidth] vector of positive values. The 2-D projected
height of an object must be greater than or equal to minHeight. The projected width of
an object must be greater than or equal to minWidth. Units are in pixels.
Example: [25 20]

Probability of detecting a target — Probability of detection
0.9 (default) | positive scalar less than or equal to 1

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-56

Probability of detecting a target, specified as a positive scalar less than or equal to 1. This
quantity defines the probability that the sensor detects a detectable object. A detectable
object is an object that satisfies the minimum detectable size, maximum range, maximum
speed, and maximum allowed occlusion constraints.
Example: 0.95

Number of false positives per image — Number of false detections
generated by the vision sensor per image
0.1 (default) | nonnegative scalar

Number of false detections generated by the vision sensor per image, specified as a
nonnegative scalar.
Example: 1.0

Measurements - Lane Detector Settings

Minimum lane size in image (pixels) — Maximum size of lane
[20 5] (default) | 1-by-2 real-valued vector

Minimum size of a projected lane marking in the camera image that can be detected by
the sensor after accounting for curvature, specified as a 1-by-2 real-valued vector,
[minHeight minWidth]. Lane markings must exceed both of these values to be
detected. Units are in pixels.

Dependencies

To enable this parameter, set the Types of detections generated by sensor parameter
to Lanes only, Lanes only, or Lanes and objects.

Accuracy of lane boundary (pixels) — Accuracy of lane boundary
3 (default) | positive scalar

Accuracy of lane boundaries, specified as a positive scalar. This property defines the
accuracy with which the lane sensor can place a lane boundary. Units are in pixels. This
property is used only when detecting lanes.
Example: 2.5

Dependencies

To enable this parameter, set the Types of detections generated by sensor parameter
to Lanes only, Lanes only, or Lanes and objects.

 Vision Detection Generator

2-57

Random Number Generator Settings

Add noise to measurements — Enable adding noise to vision sensor
measurements
on (default) | off

Select this check box to add noise to vision sensor measurements. Otherwise, the
measurements are noise-free. The MeasurementNoise property of each detection is
always computed and is not affected by the value you specify for the Add noise to
measurements parameter.

Select method to specify initial seed — Method to specify random number
generator seed
Repeatable (default) | Specify seed | Nonrepeatable

Method to set the random number generator seed, specified as Repeatable, Specify
seed, or Nonrepeatable. When set to Specify seed, the value set in the
InitialSeed parameter is used. When set to Repeatable, a random initial seed is
generated for the first simulation and then reused for all subsequent simulations. You can,
however, change the seed by issuing a clear all command. When set to
Nonrepeatable, a new initial seed is generated each time the simulation runs.
Example: Specify seed

Initial seed — Random number generator seed
0 (default) | nonnegative integer less than 232

Random number generator seed, specified as a nonnegative integer less than 232.
Example: 2001

Dependencies

To enable this parameter, set the Random Number Generator Settings parameter to
Specify seed.

Actor Profiles

Select method to specify actor profiles — method to specify actor profiles
Parameters (default) | MATLAB expression

Method to specify actor profiles, specified as Parameters or MATLAB expression.
When you select Parameters, set the actor profiles using the parameters in the Actor

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-58

Profiles tab. When you select MATLAB expression, set the actor profiles using the
MATLAB expression for actor profiles parameter.

MATLAB expression for actor profiles — MATLAB expression for actor
profiles
struct('ClassID',0,'Length',4.7,'Width',1.8,'Height',
1.4,'OriginOffset',[-1.35,0,0]) (default) | MATLAB structure | MATLAB
structure array

MATLAB expression for actor profiles, specified as a MATLAB structure or MATLAB
structure array.
Example: struct('ClassID',5,'Length',5.0,'Width',2,'Height',
2,'OriginOffset',[-1.55,0,0])

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
MATLAB expression.

Unique identifier for actors — Scenario-defined actor identifier
[] (default) | positive integer | length-L vector of unique positive integers

Scenario-defined actor identifier, specified as a positive integer or length-L vector of
unique positive integers. L must equal the number of actors input via the Actor input
port. The vector elements must match ActorID values of the actors. You can specify
Unique identifier for actors as []. In this case, the same actor profile parameters apply
to all actors.
Example: [1,2]

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

User-defined integer to classify actors — User-defined classification
identifier
0 (default) | integer | length-L vector of integers

User-defined classification identifier, specified as an integer or length-L vector of
integers. When Unique identifier for actors is a vector, this parameter is a vector of the
same length with elements in one-to-one correspondence to the actors in Unique

 Vision Detection Generator

2-59

identifier for actors. When Unique identifier for actors is empty, [], you must specify
this parameter as a single integer whose value applies to all actors.
Example: 2

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Length of actors cuboids (m) — Length of cuboid
4.7 (default) | positive scalar | length-L vector of positive values

Length of cuboid, specified as a positive scalar or length-L vector of positive values. When
Unique identifier for actors is a vector, this parameter is a vector of the same length
with elements in one-to-one correspondence to the actors in Unique identifier for
actors. When Unique identifier for actors is empty, [], you must specify this
parameter as a positive scalar whose value applies to all actors. Units are in meters.
Example: 6.3

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Width of actors cuboids (m) — Width of cuboid
4.7 (default) | positive scalar | length-L vector of positive values

Width of cuboid, specified as a positive scalar or length-L vector of positive values. When
Unique identifier for actors is a vector, this parameter is a vector of the same length
with elements in one-to-one correspondence to the actors in Unique identifier for
actors. When Unique identifier for actors is empty, [], you must specify this
parameter as a positive scalar whose value applies to all actors. Units are in meters.
Example: 4.7

Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Height of actors cuboids (m) — Height of cuboid
4.7 (default) | positive scalar | length-L vector of positive values

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-60

Height of cuboid, specified as a positive scalar or length-L vector of positive values. When
Unique identifier for actors is a vector, this parameter is a vector of the same length
with elements in one-to-one correspondence to the actors in Unique identifier for
actors. When Unique identifier for actors is empty, [], you must specify this
parameter as a positive scalar whose value applies to all actors. Units are in meters.
Example: 2.0
Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Rotational center of actors from bottom center (m) — Rotational center
of the actor
{ [-1.35, 0, 0] } (default) | length-L cell array of real-valued 1-by-3 vectors

Rotational center of the actor, specified as a length-L cell array of real-valued 1-by-3
vectors. Each vector represents the offset of the rotational center of the actor from the
bottom-center of the actor. For vehicles, the offset corresponds to the point on the ground
beneath the center of the rear axle. When Unique identifier for actors is a vector, this
parameter is a cell array of vectors with cells in one-to-one correspondence to the actors
in Unique identifier for actors. When Unique identifier for actors is empty, [], you
must specify this parameter as a cell array of one element containing the offset vector
whose values apply to all actors. Units are in meters.
Example: [-1.35, .2, .3]
Dependencies

To enable this parameter, set the Select method to specify actor profiles parameter to
Parameters.

Camera Intrinsics

Focal length (pixels) — Camera focal length
[800.800] (default) | real-valued 1-by-2 vector of positive integers

Camera focal length, specified as a real-valued 1-by-2 vector of positive integers. Units
are in pixels. See cameraIntrinsics.
Example: [480,320]

Optical center of the camera (pixels) — Optical center of the camera
[320,240] (default) | real-valued 1-by-2 vector of positive integers

 Vision Detection Generator

2-61

Optical center of the camera, specified as a real-valued 1-by-2 vector of positive integers.
Units are in pixels. See cameraIntrinsics.
Example: [480,320]

Image size produced by the camera (pixels) — Image size produced by the
camera
[480,640] (default) | real-valued 1-by-2 vector of positive integers

Image size produced by the camera, specified as a real-valued 1-by-2 vector of positive
integers. Units are in pixels. See cameraIntrinsics.
Example: [240,320]

Radial distortion coefficients — Radial distortion coefficients
[0,0] (default) | real-valued 1-by-2 matrix of nonnegative values

Radial distortion coefficients, specified as a real-valued 1-by-2 matrix of nonnegative
values. See cameraIntrinsics.
Example: [1,1]

Tangential distortion coefficients — Tangential distortion coefficients
[0,0] (default) | real-valued 1-by-2 matrix of nonnegative values

Tangential distortion coefficients, specified as a real-valued 1-by-2 matrix of nonnegative
values. See cameraIntrinsics.
Example: [1,1]

Skew of the camera axes — Skew of the camera axes
0 (default) | nonnegative scalar

Skew of the camera axes, specified as a nonnegative scalar. See cameraIntrinsics
Example: 0.1

See Also
Bird's-Eye Scope | Detection Concatenation | Multiobject Tracker | Radar Detection
Generator | cameraIntrinsics | visionDetectionGenerator

2 Blocks in Automated Driving System Toolbox — Alphabetical List

2-62

Topics
“Getting Started with Buses” (Simulink)

Introduced in R2017b

 Vision Detection Generator

2-63

Functions in Automated Driving
System Toolbox

3

cameas
Measurement function for constant-acceleration motion

Syntax
measurement = cameas(state)
measurement = cameas(state,frame)
measurement = cameas(state,frame,sensorpos)
measurement = cameas(state,frame,sensorpos,sensorvel)
measurement = cameas(state,frame,sensorpos,sensorvel,laxes)
measurement = cameas(state,measurementParameters)

Description
measurement = cameas(state) returns the measurement, for the constant-
acceleration Kalman filter motion model in rectangular coordinates. The state argument
specifies the current state of the filter.

measurement = cameas(state,frame) also specifies the measurement coordinate
system, frame.

measurement = cameas(state,frame,sensorpos) also specifies the sensor
position, sensorpos.

measurement = cameas(state,frame,sensorpos,sensorvel) also specifies the
sensor velocity, sensorvel.

measurement = cameas(state,frame,sensorpos,sensorvel,laxes) also
specifies the local sensor axes orientation, laxes.

measurement = cameas(state,measurementParameters) specifies the
measurement parameters, measurementParameters.

Examples

3 Functions in Automated Driving System Toolbox

3-2

Create Measurement from Accelerating Object in Rectangular Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position,
velocity, and acceleration in both dimensions. The measurements are in rectangular
coordinates.

state = [1,10,3,2,20,0.5].';
measurement = cameas(state)

measurement = 3×1

 1
 2
 0

The measurement is returned in three-dimensions with the z-component set to zero.

Create Measurement from Accelerating Object in Spherical Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position,
velocity, and acceleration in both dimensions. The measurements are in spherical
coordinates.

state = [1,10,3,2,20,5].';
measurement = cameas(state,'spherical')

measurement = 4×1

 63.4349
 0
 2.2361
 22.3607

The elevation of the measurement is zero and the range rate is positive. These results
indicate that the object is moving away from the sensor.

 cameas

3-3

Create Measurement from Accelerating Object in Translated Spherical Frame

Define the state of an object moving in 2-D constant-acceleration motion. The state
consists of position, velocity, and acceleration in each dimension. The measurements are
in spherical coordinates with respect to a frame located at (20;40;0) meters from the
origin.

state = [1,10,3,2,20,5].';
measurement = cameas(state,'spherical',[20;40;0])

measurement = 4×1

 -116.5651
 0
 42.4853
 -22.3607

The elevation of the measurement is zero and the range rate is negative indicating that
the object is moving toward the sensor.

Create Measurement from Constant-Accelerating Object Using Measurement
Parameters

Define the state of an object moving in 2-D constant-acceleration motion. The state
consists of position, velocity, and acceleration in each dimension. The measurements are
in spherical coordinates with respect to a frame located at (20;40;0) meters from the
origin.

state2d = [1,10,3,2,20,5].';

The elevation of the measurement is zero and the range rate is negative indicating that
the object is moving toward the sensor.

frame = 'spherical';
sensorpos = [20;40;0];
sensorvel = [0;5;0];
laxes = eye(3);
measurement = cameas(state2d,'spherical',sensorpos,sensorvel,laxes)

measurement = 4×1

3 Functions in Automated Driving System Toolbox

3-4

 -116.5651
 0
 42.4853
 -17.8885

The elevation of the measurement is zero and the range rate is negative. These results
indicate that the object is moving toward the sensor.

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos,'OriginVelocity',sensorvel, ...
 'Orientation',laxes);
measurement = cameas(state2d,measparm)

measurement = 4×1

 -116.5651
 0
 42.4853
 -17.8885

Input Arguments
state — Kalman filter state vector
real-valued 3N-element vector

Kalman filter state vector for constant-acceleration motion, specified as a real-valued 3N-
element vector. N is the number of spatial degrees of freedom of motion. For each spatial
degree of motion, the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx;ax]
2-D [x;vx;ax;y;vy;ay]
3-D [x;vx;ax;y;vy;ay;z;vz;az]

For example, x represents the x-coordinate, vx represents the velocity in the x-direction,
and ax represents the acceleration in the x-direction. If the motion model is in one-
dimensional space, the y- and z-axes are assumed to be zero. If the motion model is in

 cameas

3-5

two-dimensional space, values along the z-axis are assumed to be zero. Position
coordinates are in meters. Velocity coordinates are in meters/second. Acceleration
coordinates are in meters/second2.
Example: [5;0.1;0.01;0;-0.2;-0.01;-3;0.05;0]
Data Types: double

frame — Measurement frame
'rectangular' (default) | 'spherical'

Measurement frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of the x, y, and z Cartesian coordinates of the
tracked object. When specified as 'spherical', a measurement consists of the azimuth,
elevation, range, and range rate of the tracked object.
Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the global coordinate system, specified as a real-valued 3-
by-1 column vector. Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the global coordinate system, specified as a real-valued 3-
by-1 column vector. Units are in meters/second.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column
specifies the direction of the local x-, y-, and z-axes, respectively, with respect to the
global coordinate system.
Data Types: double

measurementParameters — Measurement parameters
structure

3 Functions in Automated Driving System Toolbox

3-6

Measurement parameters, specified as a structure. The fields of the structure are:

measurementParameters struct

Parameter Definition Default
OriginPosition Sensor position with respect

to the global coordinate
system, specified as a real-
valued 3-by-1 column vector.
Units are in meters.

[0;0;0]

OriginVelocity Sensor velocity with respect
to the global coordinate
system, specified as a real-
valued 3-by-1 column vector.
Units are in m/s.

[0;0;0]

Orientation Local sensor coordinate
axes, specified as a 3-by-3
orthogonal matrix. Each
column specifies the
direction of the local x-, y-,
and z-axes, respectively,
with respect to the global
coordinate system.

eye(3)

HasVelocity Indicates whether
measurements contain
velocity or range rate
components, specified as
true or false.

false when frame
argument is
'rectangular' and true
when frame argument is
'spherical'

HasElevation Indicates whether
measurements contain
elevation components,
specified as true or false.

true

Data Types: struct

 cameas

3-7

Output Arguments
measurement — Measurement vector
N-by-1 column vector

Measurement vector, returned as an N-by-1 column vector. The form of the measurement
depends upon which syntax you use.

• When the syntax does not use the measurementParameters argument, the
measurement vector is [x,y,z] when the frame input argument is set to
'rectangular' and [az;el;r;rr] when the frame is set to 'spherical'.

• When the syntax uses the measurementParameters argument, the size of the
measurement vector depends on the values of the frame, HasVelocity, and
HasElevation fields in the measurementParameters structure.

frame measurement
'spherical' Specifies the azimuth angle, az,

elevation angle, el, range, r, and range
rate, rr, of the object with respect to the
local ego coordinate system. Positive
values for range rate indicate that an
object is moving away from the sensor.

Spherical measurements

 HasElevation
 false true
HasVelo
city

false [az;r] [az;el;
r]

true [az;r;r
r]

[az;el;
r;rr]

Angle units are in degrees, range units
are in meters, and range rate units are
in m/s.

3 Functions in Automated Driving System Toolbox

3-8

frame measurement
'rectangular Specifies the Cartesian position and

velocity coordinates of the tracked
object with respect to the ego
coordinate system.

Rectangular measurements

HasVelocit
y

false [x;y;y]
true [x;vx;y,v

y;z;vz]

Position units are in meters and velocity
units are in m/s.

Data Types: double

Definitions

Azimuth and Elevation Angle Definitions
Define the azimuth and elevation angles used in Automated Driving System Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal
projection onto the xy plane. The angle is positive in going from the x axis toward the y
axis. Azimuth angles lie between –180 and 180 degrees. The elevation angle is the angle
between the vector and its orthogonal projection onto the xy-plane. The angle is positive
when going toward the positive z-axis from the xy plane.

 cameas

3-9

3 Functions in Automated Driving System Toolbox

3-10

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameasjac | constacc | constaccjac | constturn | constturnjac | constvel |
constveljac | ctmeas | ctmeasjac | cvmeas | cvmeasjac

Classes
trackingEKF | trackingKF | trackingUKF

Introduced in R2017a

 cameas

3-11

cameasjac
Jacobian of measurement function for constant-acceleration motion

Syntax
measurementjac = cameasjac(state)
measurementjac = cameasjac(state,frame)
measurementjac = cameasjac(state,frame,sensorpos)
measurementjac = cameasjac(state,frame,sensorpos,sensorvel)
measurementjac = cameasjac(state,frame,sensorpos,sensorvel,laxes)
measurementjac = cameasjac(state,measurementParameters)

Description
measurementjac = cameasjac(state) returns the measurement Jacobian, for
constant-acceleration Kalman filter motion model in rectangular coordinates. The state
argument specifies the current state of the filter.

measurementjac = cameasjac(state,frame) also specifies the measurement
coordinate system, frame.

measurementjac = cameasjac(state,frame,sensorpos) also specifies the sensor
position, sensorpos.

measurementjac = cameasjac(state,frame,sensorpos,sensorvel) also
specifies the sensor velocity, sensorvel.

measurementjac = cameasjac(state,frame,sensorpos,sensorvel,laxes) also
specifies the local sensor axes orientation, laxes.

measurementjac = cameasjac(state,measurementParameters) specifies the
measurement parameters, measurementParameters.

Examples

3 Functions in Automated Driving System Toolbox

3-12

Measurement Jacobian of Accelerating Object in Rectangular Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position,
velocity, and acceleration in both dimensions. Construct the measurement Jacobian in
rectangular coordinates.

state = [1,10,3,2,20,5].';
jacobian = cameasjac(state)

jacobian = 3×6

 1 0 0 0 0 0
 0 0 0 1 0 0
 0 0 0 0 0 0

Measurement Jacobian of Accelerating Object in Spherical Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position,
velocity, and acceleration in both dimensions. Compute the measurement Jacobian in
spherical coordinates.

state = [1;10;3;2;20;5];
measurementjac = cameasjac(state,'spherical')

measurementjac = 4×6

 -22.9183 0 0 11.4592 0 0
 0 0 0 0 0 0
 0.4472 0 0 0.8944 0 0
 0.0000 0.4472 0 0.0000 0.8944 0

Measurement Jacobian of Accelerating Object in Translated Spherical Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position,
velocity, and acceleration in both dimensions. Compute the measurement Jacobian in
spherical coordinates with respect to an origin at (5;-20;0) meters.

 cameasjac

3-13

state = [1,10,3,2,20,5].';
sensorpos = [5,-20,0].';
measurementjac = cameasjac(state,'spherical',sensorpos)

measurementjac = 4×6

 -2.5210 0 0 -0.4584 0 0
 0 0 0 0 0 0
 -0.1789 0 0 0.9839 0 0
 0.5903 -0.1789 0 0.1073 0.9839 0

Create Measurement Jacobian of Accelerating Object Using Measurement
Parameters

Define the state of an object in 2-D constant-acceleration motion. The state is the position,
velocity, and acceleration in both dimensions. Compute the measurement Jacobian in
spherical coordinates with respect to an origin at (5;-20;0) meters.

state2d = [1,10,3,2,20,5].';
sensorpos = [5,-20,0].';
frame = 'spherical';
sensorvel = [0;8;0];
laxes = eye(3);
measurementjac = cameasjac(state2d,frame,sensorpos,sensorvel,laxes)

measurementjac = 4×6

 -2.5210 0 0 -0.4584 0 0
 0 0 0 0 0 0
 -0.1789 0 0 0.9839 0 0
 0.5274 -0.1789 0 0.0959 0.9839 0

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos,'OriginVelocity',sensorvel, ...
 'Orientation',laxes);
measurementjac = cameasjac(state2d,measparm)

measurementjac = 4×6

3 Functions in Automated Driving System Toolbox

3-14

 -2.5210 0 0 -0.4584 0 0
 0 0 0 0 0 0
 -0.1789 0 0 0.9839 0 0
 0.5274 -0.1789 0 0.0959 0.9839 0

Input Arguments
state — Kalman filter state vector
real-valued 3N-element vector

Kalman filter state vector for constant-acceleration motion, specified as a real-valued 3N-
element vector. N is the number of spatial degrees of freedom of motion. For each spatial
degree of motion, the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx;ax]
2-D [x;vx;ax;y;vy;ay]
3-D [x;vx;ax;y;vy;ay;z;vz;az]

For example, x represents the x-coordinate, vx represents the velocity in the x-direction,
and ax represents the acceleration in the x-direction. If the motion model is in one-
dimensional space, the y- and z-axes are assumed to be zero. If the motion model is in
two-dimensional space, values along the z-axis are assumed to be zero. Position
coordinates are in meters. Velocity coordinates are in meters/second. Acceleration
coordinates are in meters/second2.
Example: [5;0.1;0.01;0;-0.2;-0.01;-3;0.05;0]
Data Types: double

frame — Measurement frame
'rectangular' (default) | 'spherical'

Measurement frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of the x, y, and z Cartesian coordinates of the
tracked object. When specified as 'spherical', a measurement consists of the azimuth,
elevation, range, and range rate of the tracked object.
Data Types: char

 cameasjac

3-15

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the global coordinate system, specified as a real-valued 3-
by-1 column vector. Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the global coordinate system, specified as a real-valued 3-
by-1 column vector. Units are in meters/second.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column
specifies the direction of the local x-, y-, and z-axes, respectively, with respect to the
global coordinate system.
Data Types: double

measurementParameters — Measurement parameters
structure

Measurement parameters, specified as a structure. The fields of the structure are:

3 Functions in Automated Driving System Toolbox

3-16

measurementParameters struct

Parameter Definition Default
OriginPosition Sensor position with respect

to the global coordinate
system, specified as a real-
valued 3-by-1 column vector.
Units are in meters.

[0;0;0]

OriginVelocity Sensor velocity with respect
to the global coordinate
system, specified as a real-
valued 3-by-1 column vector.
Units are in m/s.

[0;0;0]

Orientation Local sensor coordinate
axes, specified as a 3-by-3
orthogonal matrix. Each
column specifies the
direction of the local x-, y-,
and z-axes, respectively,
with respect to the global
coordinate system.

eye(3)

HasVelocity Indicates whether
measurements contain
velocity or range rate
components, specified as
true or false.

false when frame
argument is
'rectangular' and true
when frame argument is
'spherical'

HasElevation Indicates whether
measurements contain
elevation components,
specified as true or false.

true

Data Types: struct

Output Arguments
measurementjac — Measurement Jacobian
real-valued 3-by-N matrix | real-valued 4-by-N matrix

 cameasjac

3-17

Measurement Jacobian, specified as a real-valued 3-by-N or 4-by-N matrix. N is the
dimension of the state vector. The interpretation of the rows and columns depends on the
frame argument, as described in this table.

Frame Measurement Jacobian
'rectangular' Jacobian of the measurements [x;y;z]

with respect to the state vector. The
measurement vector is with respect to the
local coordinate system. Coordinates are in
meters.

'spherical' Jacobian of the measurement vector
[az;el;r;rr] with respect to the state
vector. Measurement vector components
specify the azimuth angle, elevation angle,
range, and range rate of the object with
respect to the local sensor coordinate
system. Angle units are in degrees. Range
units are in meters and range rate units are
in meters/second.

Definitions

Azimuth and Elevation Angle Definitions
Define the azimuth and elevation angles used in Automated Driving System Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal
projection onto the xy plane. The angle is positive in going from the x axis toward the y
axis. Azimuth angles lie between –180 and 180 degrees. The elevation angle is the angle
between the vector and its orthogonal projection onto the xy-plane. The angle is positive
when going toward the positive z-axis from the xy plane.

3 Functions in Automated Driving System Toolbox

3-18

 cameasjac

3-19

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | constacc | constaccjac | constturn | constturnjac | constvel |
constveljac | ctmeas | ctmeasjac | cvmeas | cvmeasjac

Classes
trackingEKF | trackingKF | trackingUKF

Introduced in R2017a

3 Functions in Automated Driving System Toolbox

3-20

checkPathValidity
Check validity of planned vehicle path

Syntax
isValid = checkPathValidity(refPath,costmap)

Description
isValid = checkPathValidity(refPath,costmap) checks the validity of a planned
vehicle path, refPath, against the vehicle costmap. Use this function to test if a path is
valid within a changing environment.

A path is valid if the following conditions are true:

• The path has at least one pose.
• The path is collision-free and within the limits of costmap.

Examples

Plan Path and Check Its Validity

Plan a vehicle path through a parking lot by using the optimal rapidly exploring random
tree (RRT*) algorithm. Check that the path is valid, and then plot the transition poses
along the path.

Load a costmap of a parking lot. Plot the costmap to see the parking lot and inflated areas
for the vehicle to avoid.

data = load('parkingLotCostmap.mat');
costmap = data.parkingLotCostmap;
plot(costmap)

 checkPathValidity

3-21

Define start and goal poses for the vehicle as [x, y, Θ] vectors. World units for the (x,y)
locations are in meters. World units for the Θ orientation angles are in degrees.

startPose = [4, 4, 90]; % [meters, meters, degrees]
goalPose = [30, 13, 0];

Use a pathPlannerRRT object to plan a path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);

Check that the path is valid.

isPathValid = checkPathValidity(refPath,costmap)

3 Functions in Automated Driving System Toolbox

3-22

isPathValid = logical
 1

Interpolate the transition poses along the path.

transitionPoses = interpolate(refPath);

Plot the planned path and the transition poses on the costmap.

hold on
plot(refPath,'DisplayName','Planned Path')
scatter(transitionPoses(:,1),transitionPoses(:,2),[],'filled', ...
 'DisplayName','Transition Poses')
hold off

 checkPathValidity

3-23

Input Arguments
refPath — Planned vehicle path
driving.Path object

Planned vehicle path, specified as a driving.Path object.

costmap — Costmap used for collision checking
vehicleCostmap object

Costmap used for collision checking, specified as a vehicleCostmap object.

Output Arguments
isValid — Indicates validity of planed vehicle path
1 | 0

Indicates validity of planed vehicle path, refPath, returned as a logical value of 1 or 0.

A path is valid (1) if the following conditions are true:

• The path has at least one pose.
• The path is collision-free and within the limits of costmap.

Algorithms
To check if a vehicle path is valid, the checkPathValidity function discretizes the path
and then checks that the poses at the discretized points are collision-free. The threshold
for a collision-free pose depends on the resolution at which checkPathValidity
discretizes.

See Also
Functions
plan | plot

3 Functions in Automated Driving System Toolbox

3-24

Objects
driving.Path | pathPlannerRRT | vehicleCostmap

Topics
“Automated Parking Valet”

Introduced in R2018a

 checkPathValidity

3-25

configureDetectorMonoCamera
Configure object detector for using calibrated monocular camera

Syntax
configuredDetector = configureDetectorMonoCamera(detector,sensor,
objectSize)

Description
configuredDetector = configureDetectorMonoCamera(detector,sensor,
objectSize) configures an ACF (aggregate channel features), Faster R-CNN (regions
with convolutional neural networks), or Fast R-CNN object detector to detect objects of a
known size on a ground plane. Specify your trained object detector, detector, a camera
configuration for transforming image coordinates to world coordinates, sensor, and the
range of the object widths and lengths, objectSize.

Examples

Detect Vehicles Using Monocular Camera and ACF

Configure an ACF object detector for use with a monocular camera mounted on an ego
vehicle. Use this detector to detect vehicles within video frames captured by the camera.

Load an acfObjectDetector object pretrained to detect vehicles.

detector = vehicleDetectorACF;

Model a monocular camera sensor by creating a monoCamera object. This object contains
the camera intrinsics and the location of the camera on the ego vehicle.

focalLength = [309.4362 344.2161]; % [fx fy]
principalPoint = [318.9034 257.5352]; % [cx cy]
imageSize = [480 640]; % [mrows ncols]

3 Functions in Automated Driving System Toolbox

3-26

height = 2.1798; % height of camera above ground, in meters
pitch = 14; % pitch of camera, in degrees
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

monCam = monoCamera(intrinsics,height,'Pitch',pitch);

Configure the detector for use with the camera. Limit the width of detected objects to a
typical range for vehicle widths: 1.5–2.5 meters. The configured detector is an
acfObjectDetectorMonoCamera object.

vehicleWidth = [1.5 2.5];
detectorMonoCam = configureDetectorMonoCamera(detector,monCam,vehicleWidth);

Load a video captured from the camera, and create a video reader and player.

videoFile = fullfile(toolboxdir('driving'),'drivingdata','caltech_washington1.avi');
reader = vision.VideoFileReader(videoFile,'VideoOutputDataType','uint8');
videoPlayer = vision.VideoPlayer('Position',[29 597 643 386]);

Run the detector in a loop over the video. Annotate the video with the bounding boxes for
the detections and the detection confidence scores.

cont = ~isDone(reader);
while cont
 I = reader();

 % Run the detector.
 [bboxes,scores] = detect(detectorMonoCam,I);
 if ~isempty(bboxes)
 I = insertObjectAnnotation(I, ...
 'rectangle',bboxes, ...
 scores, ...
 'Color','g');
 end
 videoPlayer(I)
 % Exit the loop if the video player figure is closed.
 cont = ~isDone(reader) && isOpen(videoPlayer);
end

 configureDetectorMonoCamera

3-27

Input Arguments
detector — Object detector to configure
acfObjectDetector object | fastRCNNObjectDetector object |
fasterRCNNObjectDetector object

Object detector to configure, specified as one of these object detector objects:

• acfObjectDetector

3 Functions in Automated Driving System Toolbox

3-28

• fastRCNNObjectDetector
• fasterRCNNObjectDetector

Train the object detector before configuring them by using:

• trainACFObjectDetector
• trainFastRCNNObjectDetector
• trainFasterRCNNObjectDetector

sensor — Camera configuration
monoCamera object

Camera configuration, specified as a monoCamera object. The object contains the camera
intrinsics, the location, the pitch, yaw, and roll placement, and the world units for the
parameters. Use the intrinsics to transform the object points in the image to world
coordinates, which you can then compare to the WorldObjectSize property for
detector.

objectSize — Range of object widths and lengths
[minWidth maxWidth] vector | [minWidth maxWidth; minLength maxLength] vector

Range of object widths and lengths in world units, specified as a [minWidth maxWidth]
vector or [minWidth maxWidth; minLength maxLength] vector. Specifying the range of
object lengths is optional.

Output Arguments
configuredDetector — Configured object detector
acfObjectDetectorMonoCamera object | fastRCNNObjectDetectorMonoCamera
object | fasterRCNNObjectDetectorMonoCamera object

Configured object detector, returned as one of these object detector objects:

• acfObjectDetectorMonoCamera
• fastRCNNObjectDetectorMonoCamera
• fasterRCNNObjectDetectorMonoCamera

 configureDetectorMonoCamera

3-29

See Also
acfObjectDetector | acfObjectDetectorMonoCamera |
fastRCNNObjectDetector | fastRCNNObjectDetectorMonoCamera |
fasterRCNNObjectDetector | fasterRCNNObjectDetectorMonoCamera |
monoCamera

Introduced in R2017a

3 Functions in Automated Driving System Toolbox

3-30

constacc
Constant-acceleration motion model

Syntax
updatedstate = constacc(state)
updatedstate = constacc(state,dt)

Description
updatedstate = constacc(state) returns the updated state, state, of a constant
velocity Kalman filter motion model for a step time of one second.

updatedstate = constacc(state,dt) specifies the time step, dt.

Examples

Predict State for Constant-Acceleration Motion

Define an initial state for 2-D constant-acceleration motion.

state = [1;1;1;2;1;0];

Predict the state 1 second later.

state = constacc(state)

state = 6×1

 2.5000
 2.0000
 1.0000
 3.0000
 1.0000

 constacc

3-31

 0

Predict State for Constant-Acceleration Motion With Specified Time Step

Define an initial state for 2-D constant-acceleration motion.

state = [1;1;1;2;1;0];

Predict the state 0.5 s later.

state = constacc(state,0.5)

state = 6×1

 1.6250
 1.5000
 1.0000
 2.5000
 1.0000
 0

Input Arguments
state — Kalman filter state vector
real-valued 3N-element vector

Kalman filter state vector for constant-acceleration motion, specified as a real-valued 3N-
element vector. N is the number of spatial degrees of freedom of motion. For each spatial
degree of motion, the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx;ax]
2-D [x;vx;ax;y;vy;ay]
3-D [x;vx;ax;y;vy;ay;z;vz;az]

3 Functions in Automated Driving System Toolbox

3-32

For example, x represents the x-coordinate, vx represents the velocity in the x-direction,
and ax represents the acceleration in the x-direction. If the motion model is in one-
dimensional space, the y- and z-axes are assumed to be zero. If the motion model is in
two-dimensional space, values along the z-axis are assumed to be zero. Position
coordinates are in meters. Velocity coordinates are in meters/second. Acceleration
coordinates are in meters/second2.
Example: [5;0.1;0.01;0;-0.2;-0.01;-3;0.05;0]
Data Types: double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

Output Arguments
updatedstate — Updated state vector
real-valued column or row vector | real-valued matrix

Updated state vector, returned as a real-valued vector or real-valued matrix with same
number of elements and dimensions as the input state vector.

Algorithms
For a two-dimensional constant-acceleration process, the state transition matrix after a
time step, T, is block diagonal:

 constacc

3-33

x

vx

ax

y

vy

ay

T T
k

k

k

k

k

k

+

+

+

+

+

+

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

=

1

1

1

1

1

1

2
1

1

2
0 0 0

0 1 TT

T T

T

xk

0 0 0

0 0 1 0 0 0

0 0 0 1
1

2

0 0 0 0 1

0 0 0 0 0 1

2

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

vvx

ax

y

vy

ay

k

k

k

k

k

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

The block for each spatial dimension has this form:

1
1

2

0 1

0 0 1

2
T T

T

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

For each additional spatial dimension, add an identical block.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constaccjac | constturn | constturnjac | constvel |
constveljac | ctmeas | ctmeasjac | cvmeas | cvmeasjac

Classes
trackingEKF | trackingKF | trackingUKF

3 Functions in Automated Driving System Toolbox

3-34

Introduced in R2017a

 constacc

3-35

constaccjac
Jacobian for constant-acceleration motion

Syntax
jacobian = constaccjac(state)
jacobian = constaccjac(state,dt)

Description
jacobian = constaccjac(state) returns the updated Jacobian , jacobian, for a
constant-acceleration Kalman filter motion model. The step time is one second. The
state argument specifies the current state of the filter.

jacobian = constaccjac(state,dt) also specifies the time step, dt.

Examples

Compute State Jacobian for Constant-Acceleration Motion

Compute the state Jacobian for two-dimensional constant-acceleration motion.

Define an initial state and compute the state Jacobian for a one second update time.

state = [1,1,1,2,1,0];
jacobian = constaccjac(state)

jacobian = 6×6

 1.0000 1.0000 0.5000 0 0 0
 0 1.0000 1.0000 0 0 0
 0 0 1.0000 0 0 0
 0 0 0 1.0000 1.0000 0.5000
 0 0 0 0 1.0000 1.0000

3 Functions in Automated Driving System Toolbox

3-36

 0 0 0 0 0 1.0000

Compute State Jacobian for Constant-Acceleration Motion with Specified Time
Step

Compute the state Jacobian for two-dimensional constant-acceleration motion. Set the
step time to 0.5 seconds.

state = [1,1,1,2,1,0].';
jacobian = constaccjac(state,0.5)

jacobian = 6×6

 1.0000 0.5000 0.1250 0 0 0
 0 1.0000 0.5000 0 0 0
 0 0 1.0000 0 0 0
 0 0 0 1.0000 0.5000 0.1250
 0 0 0 0 1.0000 0.5000
 0 0 0 0 0 1.0000

Input Arguments
state — Kalman filter state vector
real-valued 3N-element vector

Kalman filter state vector for constant-acceleration motion, specified as a real-valued 3N-
element vector. N is the number of spatial degrees of freedom of motion. For each spatial
degree of motion, the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx;ax]
2-D [x;vx;ax;y;vy;ay]
3-D [x;vx;ax;y;vy;ay;z;vz;az]

For example, x represents the x-coordinate, vx represents the velocity in the x-direction,
and ax represents the acceleration in the x-direction. If the motion model is in one-

 constaccjac

3-37

dimensional space, the y- and z-axes are assumed to be zero. If the motion model is in
two-dimensional space, values along the z-axis are assumed to be zero. Position
coordinates are in meters. Velocity coordinates are in meters/second. Acceleration
coordinates are in meters/second2.
Example: [5;0.1;0.01;0;-0.2;-0.01;-3;0.05;0]
Data Types: double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

Output Arguments
jacobian — Constant-acceleration motion Jacobian
real-valued 3N-by-3N matrix

Constant-acceleration motion Jacobian, returned as a real-valued 3N-by-3N matrix.

Algorithms
For a two-dimensional constant-acceleration process, the Jacobian matrix after a time
step, T, is block diagonal:

1
1

2
0 0 0

0 1 0 0 0

0 0 1 0 0 0

0 0 0 1
1

2

0 0 0 0 1

0 0 0 0 0 1

2

2

T T

T

T T

T

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙̇
˙
˙
˙
˙
˙
˙
˙

3 Functions in Automated Driving System Toolbox

3-38

The block for each spatial dimension has this form:

1
1

2

0 1

0 0 1

2
T T

T

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

For each additional spatial dimension, add an identical block.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constturn | constturnjac | constvel |
constveljac | ctmeas | ctmeasjac | cvmeas | cvmeasjac

Classes
trackingEKF | trackingKF | trackingUKF

Introduced in R2017a

 constaccjac

3-39

constturn
Constant turn-rate motion model

Syntax
updatedstate = constturn(state)
updatedstate = constturn(state,dt)
updatedstate = constturn(state,dt,w)

Description
updatedstate = constturn(state) returns the updated state, updatedstate,
obtained from the previous state, state, after a one-second step time for motion
modelled as constant turn rate. Constant turn rate means that motion in the x-y plane
follows a constant angular velocity and motion in the vertical z directions follows a
constant velocity model.

updatedstate = constturn(state,dt) also specifies the time step, dt.

updatedstate = constturn(state,dt,w) also specifies noise, w.

Examples

Update State for Constant Turn-Rate Motion

Define an initial state for 2-D constant turn-rate motion. The turn rate is 12 degrees per
second. Update the state to one second later.

state = [500,0,0,100,12].';
state = constturn(state)

state = 5×1

 489.5662

3 Functions in Automated Driving System Toolbox

3-40

 -20.7912
 99.2705
 97.8148
 12.0000

Update State for Constant Turn-Rate Motion with Specified Time Step

Define an initial state for 2-D constant turn-rate motion. The turn rate is 12 degrees per
second. Update the state to 0.1 seconds later.

state = [500,0,0,100,12].';
state = constturn(state,0.1)

state = 5×1

 499.8953
 -2.0942
 9.9993
 99.9781
 12.0000

Input Arguments
state — State vector
real-valued 5-element vector | real-valued 7-element vector | 5-by-N real-valued matrix |
7-by-N real-valued matrix

State vector for a constant turn-rate motion model in two or three spatial dimensions,
specified as a real-valued vector or matrix.

• When specified as a 5-element vector, the state vector describes 2-D motion in the x-y
plane. You can specify the state vector as a row or column vector. The components of
the state vector are [x;vx;y;vy;omega] where x represents the x-coordinate and vx
represents the velocity in the x-direction. y represents the y-coordinate and vy
represents the velocity in the y-direction. omega represents the turn rate.

 constturn

3-41

When specified as a 5-by-N matrix, each column represents a different state vector N
represents the number of states.

• When specified as a 7-element vector, the state vector describes 3-D motion. You can
specify the state vector as a row or column vector. The components of the state vector
are [x;vx;y;vy;omega;z;vz] where x represents the x-coordinate and vx
represents the velocity in the x-direction. y represents the y-coordinate and vy
represents the velocity in the y-direction. omega represents the turn rate. z represents
the z-coordinate and vz represents the velocity in the z-direction.

When specified as a 7-by-N matrix, each column represents a different state vector. N
represents the number of states.

Position coordinates are in meters. Velocity coordinates are in meters/second. Turn rate is
in degrees/second.
Example: [5;0.1;4;-0.2;0.01]
Data Types: double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

w — State noise
scalar | real-valued (D+1)-by-N matrix

State noise, specified as a scalar or real-valued (D+1)-length -by-N matrix. D is the
number of motion dimensions and N is the number of state vectors. The components are
each columns are [ax;ay;alpha] for 2-D motion or [ax;ay;alpha;az] for 3-D
motion. ax, ay, and az are the linear acceleration noise values in the x-, y-, and z-axes,
respectively, and alpha is the angular acceleration noise value. If specified as a scalar,
the value expands to a (D+1)-by-N matrix.
Data Types: single | double

3 Functions in Automated Driving System Toolbox

3-42

Output Arguments
updatedstate — Updated state vector
real-valued column or row vector | real-valued matrix

Updated state vector, returned as a real-valued vector or real-valued matrix with same
number of elements and dimensions as the input state vector.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturnjac | constvel |
constveljac | ctmeas | ctmeasjac | cvmeas | cvmeasjac | initctekf | initctukf

Classes
trackingEKF | trackingUKF

Introduced in R2017a

 constturn

3-43

constturnjac
Jacobian for constant turn-rate motion

Syntax
jacobian = constturnjac(state)
jacobian = constturnjac(state,dt)
[jacobian,noisejacobian] = constturnjac(state,dt,w)

Description
jacobian = constturnjac(state) returns the updated Jacobian, jacobian, for
constant turn-rate Kalman filter motion model for a one-second step time. The state
argument specifies the current state of the filter. Constant turn rate means that motion in
the x-y plane follows a constant angular velocity and motion in the vertical z directions
follows a constant velocity model.

jacobian = constturnjac(state,dt) specifies the time step, dt.

[jacobian,noisejacobian] = constturnjac(state,dt,w) also specifies noise, w,
and returns the Jacobian, noisejacobian, of the state with respect to the noise.

Examples

Compute State Jacobian for Constant Turn-Rate Motion

Compute the Jacobian for a constant turn-rate motion state. Assume the turn rate is 12
degrees/second. The time step is one second.

state = [500,0,0,100,12];
jacobian = constturnjac(state)

jacobian = 5×5

3 Functions in Automated Driving System Toolbox

3-44

 1.0000 0.9927 0 -0.1043 -0.8631
 0 0.9781 0 -0.2079 -1.7072
 0 0.1043 1.0000 0.9927 -0.1213
 0 0.2079 0 0.9781 -0.3629
 0 0 0 0 1.0000

Compute State Jacobian for Constant Turn-Rate Motion with Specified Time Step

Compute the Jacobian for a constant turn-rate motion state. Assume the turn rate is 12
degrees/second. The time step is 0.1 second.

state = [500,0,0,100,12];
jacobian = constturnjac(state,0.1)

jacobian = 5×5

 1.0000 0.1000 0 -0.0010 -0.0087
 0 0.9998 0 -0.0209 -0.1745
 0 0.0010 1.0000 0.1000 -0.0001
 0 0.0209 0 0.9998 -0.0037
 0 0 0 0 1.0000

Input Arguments
state — State vector
real-valued 5-element vector | real-valued 7-element vector

State vector for a constant turn-rate motion model in two or three spatial dimensions,
specified as a real-valued vector.

• When specified as a 5-element vector, the state vector describes 2-D motion in the x-y
plane. You can specify the state vector as a row or column vector. The components of
the state vector are [x;vx;y;vy;omega] where x represents the x-coordinate and vx
represents the velocity in the x-direction. y represents the y-coordinate and vy
represents the velocity in the y-direction. omega represents the turn rate.

• When specified as a 7-element vector, the state vector describes 3-D motion. You can
specify the state vector as a row or column vector. The components of the state vector

 constturnjac

3-45

are [x;vx;y;vy;omega;z;vz] where x represents the x-coordinate and vx
represents the velocity in the x-direction. y represents the y-coordinate and vy
represents the velocity in the y-direction. omega represents the turn rate. z represents
the z-coordinate and vz represents the velocity in the z-direction.

Position coordinates are in meters. Velocity coordinates are in meters/second. Turn rate is
in degrees/second.
Example: [5;0.1;4;-0.2;0.01]
Data Types: double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

w — State noise
scalar | real-valued (D+1) vector

State noise, specified as a scalar or real-valued M-by-(D+1)-length vector. D is the number
of motion dimensions. D is two for 2-D motion and D is three for 3-D motion. The vector
components are [ax;ay;alpha] for 2-D motion or [ax;ay;alpha;az] for 3-D motion.
ax, ay, and az are the linear acceleration noise values in the x-, y-, and z-axes,
respectively, and alpha is the angular acceleration noise value. If specified as a scalar,
the value expands to a (D+1) vector.
Data Types: single | double

Output Arguments
jacobian — Constant turn-rate motion Jacobian
real-valued 5-by-5 matrix | real-valued 7-by-7 matrix

Constant turn-rate motion Jacobian, returned as a real-valued 5-by-5 matrix or 7-by-7
matrix depending on the size of the state vector. The Jacobian is constructed from the
partial derivatives of the state at the updated time step with respect to the state at the
previous time step.

3 Functions in Automated Driving System Toolbox

3-46

noisejacobian — Constant turn-rate motion noise Jacobian
real-valued 5-by-5 matrix | real-valued 7-by-7 matrix

Constant turn-rate motion noise Jacobian, returned as a real-valued 5-by-(D+1) matrix
where D is two for 2-D motion or a real-valued 7-by-(D+1) matrix where D is three for 3-D
motion. The Jacobian is constructed from the partial derivatives of the state at the
updated time step with respect to the noise components.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constvel |
constveljac | ctmeas | ctmeasjac | cvmeas | cvmeasjac | initctekf

Classes
trackingEKF

Introduced in R2017a

 constturnjac

3-47

constvel
Constant velocity state update

Syntax
updatedstate = constvel(state)
updatedstate = constvel(state,dt)

Description
updatedstate = constvel(state) returns the updated state, state, of a constant-
velocity Kalman filter motion model after a one-second time step.

updatedstate = constvel(state,dt) specifies the time step, dt.

Examples

Update State for Constant-Velocity Motion

Update the state of two-dimensional constant-velocity motion for a time interval of one
second.

state = [1;1;2;1];
state = constvel(state)

state = 4×1

 2
 1
 3
 1

3 Functions in Automated Driving System Toolbox

3-48

Update State for Constant-Velocity Motion with Specified Time Step

Update the state of two-dimensional constant-velocity motion for a time interval of 1.5
seconds.

state = [1;1;2;1];
state = constvel(state,1.5)

state = 4×1

 2.5000
 1.0000
 3.5000
 1.0000

Input Arguments
state — Kalman filter state vector
real-valued 2N-element vector

Kalman filter state vector for constant-velocity motion, specified as a real-valued 2N-
element column vector where N is the number of spatial degrees of freedom of motion.
For each spatial degree of motion, the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx]
2-D [x;vx;y;vy]
3-D [x;vx;y;vy;z;vz]

For example, x represents the x-coordinate and vx represents the velocity in the x-
direction. If the motion model is 1-D, values along the y and z axes are assumed to be
zero. If the motion model is 2-D, values along the z axis are assumed to be zero. Position
coordinates are in meters and velocity coordinates are in meters/sec.
Example: [5;.1;0;-.2;-3;.05]
Data Types: single | double

dt — Time step interval of filter
1.0 (default) | positive scalar

 constvel

3-49

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

Output Arguments
updatedstate — Updated state vector
real-valued column or row vector | real-valued matrix

Updated state vector, returned as a real-valued vector or real-valued matrix with same
number of elements and dimensions as the input state vector.

Algorithms
For a two-dimensional constant-velocity process, the state transition matrix after a time
step, T, is block diagonal as shown here.

x

v

y

v

T

T

k

x k

k

y k

+

+

+

+

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

È

Î

Í
Í
Í
Í

˘1

1

1

1

1 0 0

0 1 0 0

0 0 1

0 0 0 1

,

, ˚̊

˙
˙
˙
˙

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

x

vx

y

vy

k

k

k

k

The block for each spatial dimension is:

1

0 1

TÈ

Î
Í

˘

˚
˙

For each additional spatial dimension, add an identical block.

3 Functions in Automated Driving System Toolbox

3-50

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac |
constveljac | ctmeas | ctmeasjac | cvmeas | cvmeasjac

Classes
trackingEKF | trackingKF | trackingUKF

Introduced in R2017a

 constvel

3-51

constveljac
Jacobian for constant-velocity motion

Syntax
jacobian = constveljac(state)
jacobian = constveljac(state,dt)

Description
jacobian = constveljac(state) returns the updated Jacobian , jacobian, for a
constant-velocity Kalman filter motion model for a step time of one second. The state
argument specifies the current state of the filter.

jacobian = constveljac(state,dt) specifies the time step, dt.

Examples

Compute State Jacobian for Constant-Velocity Motion

Compute the state Jacobian for a two-dimensional constant-velocity motion model for a
one second update time.

state = [1,1,2,1].';
jacobian = constveljac(state)

jacobian = 4×4

 1 1 0 0
 0 1 0 0
 0 0 1 1
 0 0 0 1

3 Functions in Automated Driving System Toolbox

3-52

Compute State Jacobian for Constant-Velocity Motion with Specified Time Step

Compute the state Jacobian for a two-dimensional constant-velocity motion model for a
half-second update time.

state = [1;1;2;1];

Compute the state update Jacobian for 0.5 second.

jacobian = constveljac(state,0.5)

jacobian = 4×4

 1.0000 0.5000 0 0
 0 1.0000 0 0
 0 0 1.0000 0.5000
 0 0 0 1.0000

Input Arguments
state — Kalman filter state vector
real-valued 2N-element vector

Kalman filter state vector for constant-velocity motion, specified as a real-valued 2N-
element column vector where N is the number of spatial degrees of freedom of motion.
For each spatial degree of motion, the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx]
2-D [x;vx;y;vy]
3-D [x;vx;y;vy;z;vz]

For example, x represents the x-coordinate and vx represents the velocity in the x-
direction. If the motion model is 1-D, values along the y and z axes are assumed to be
zero. If the motion model is 2-D, values along the z axis are assumed to be zero. Position
coordinates are in meters and velocity coordinates are in meters/sec.

 constveljac

3-53

Example: [5;.1;0;-.2;-3;.05]
Data Types: single | double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

Output Arguments
jacobian — Constant-velocity motion Jacobian
real-valued 2N-by-2N matrix

Constant-velocity motion Jacobian, returned as a real-valued 2N-by-2N matrix. N is the
number of spatial degrees of motion.

Algorithms
For a two-dimensional constant-velocity motion, the Jacobian matrix for a time step, T, is
block diagonal:

1 0 0

0 1 0 0

0 0 1

0 0 0 1

T

T

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

The block for each spatial dimension has this form:

1

0 1

TÈ

Î
Í

˘

˚
˙

For each additional spatial dimension, add an identical block.

3 Functions in Automated Driving System Toolbox

3-54

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac |
constvel | ctmeas | ctmeasjac | cvmeas | cvmeasjac

Classes
trackingEKF | trackingKF | trackingUKF

Introduced in R2017a

 constveljac

3-55

ctmeas
Measurement function for constant turn-rate motion

Syntax
measurement = ctmeas(state)
measurement = ctmeas(state,frame)
measurement = ctmeas(state,frame,sensorpos)
measurement = ctmeas(state,frame,sensorpos,sensorvel)
measurement = ctmeas(state,frame,sensorpos,sensorvel,laxes)
measurement = ctmeas(state,measurementParameters)

Description
measurement = ctmeas(state) returns the measurement for a constant turn-rate
Kalman filter motion model in rectangular coordinates. The state argument specifies the
current state of the filter.

measurement = ctmeas(state,frame) also specifies the measurement coordinate
system, frame.

measurement = ctmeas(state,frame,sensorpos) also specifies the sensor
position, sensorpos.

measurement = ctmeas(state,frame,sensorpos,sensorvel) also specifies the
sensor velocity, sensorvel.

measurement = ctmeas(state,frame,sensorpos,sensorvel,laxes) also
specifies the local sensor axes orientation, laxes.

measurement = ctmeas(state,measurementParameters) specifies the
measurement parameters, measurementParameters.

Examples

3 Functions in Automated Driving System Toolbox

3-56

Create Measurement from Constant Turn-Rate Motion in Rectangular Frame

Create a measurement from an object undergoing constant turn-rate motion. The state is
the position and velocity in each dimension and the turn-rate. The measurements are in
rectangular coordinates.

state = [1;10;2;20;5];
measurement = ctmeas(state)

measurement = 3×1

 1
 2
 0

The z-component of the measurement is zero.

Create Measurement from Constant Turn-Rate Motion in Spherical Frame

Define the state of an object in 2-D constant turn-rate motion. The state is the position
and velocity in each dimension, and the turn rate. The measurements are in spherical
coordinates.

state = [1;10;2;20;5];
measurement = ctmeas(state,'spherical')

measurement = 4×1

 63.4349
 0
 2.2361
 22.3607

The elevation of the measurement is zero and the range rate is positive indicating that the
object is moving away from the sensor.

 ctmeas

3-57

Create Measurement from Constant Turn-Rate Motion in Translated Spherical
Frame

Define the state of an object moving in 2-D constant turn-rate motion. The state consists
of position and velocity, and the turn rate. The measurements are in spherical coordinates
with respect to a frame located at [20;40;0].

state = [1;10;2;20;5];
measurement = ctmeas(state,'spherical',[20;40;0])

measurement = 4×1

 -116.5651
 0
 42.4853
 -22.3607

The elevation of the measurement is zero and the range rate is negative indicating that
the object is moving toward the sensor.

Create Measurement from Constant Turn-Rate Motion using Measurement
Parameters

Define the state of an object moving in 2-D constant turn-rate motion. The state consists
of position and velocity, and the turn rate. The measurements are in spherical coordinates
with respect to a frame located at [20;40;0].

state2d = [1;10;2;20;5];
frame = 'spherical';
sensorpos = [20;40;0];
sensorvel = [0;5;0];
laxes = eye(3);
measurement = ctmeas(state2d,frame,sensorpos,sensorvel,laxes)

measurement = 4×1

 -116.5651
 0
 42.4853
 -17.8885

3 Functions in Automated Driving System Toolbox

3-58

The elevation of the measurement is zero and the range rate is negative indicating that
the object is moving toward the sensor.

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos, ...
 'OriginVelocity',sensorvel,'Orientation',laxes);
measurement = ctmeas(state2d,measparm)

measurement = 4×1

 -116.5651
 0
 42.4853
 -17.8885

Input Arguments
state — State vector
real-valued 5-element vector | real-valued 7-element vector | 5-by-N real-valued matrix |
7-by-N real-valued matrix

State vector for a constant turn-rate motion model in two or three spatial dimensions,
specified as a real-valued vector or matrix.

• When specified as a 5-element vector, the state vector describes 2-D motion in the x-y
plane. You can specify the state vector as a row or column vector. The components of
the state vector are [x;vx;y;vy;omega] where x represents the x-coordinate and vx
represents the velocity in the x-direction. y represents the y-coordinate and vy
represents the velocity in the y-direction. omega represents the turn rate.

When specified as a 5-by-N matrix, each column represents a different state vector N
represents the number of states.

• When specified as a 7-element vector, the state vector describes 3-D motion. You can
specify the state vector as a row or column vector. The components of the state vector
are [x;vx;y;vy;omega;z;vz] where x represents the x-coordinate and vx
represents the velocity in the x-direction. y represents the y-coordinate and vy
represents the velocity in the y-direction. omega represents the turn rate. z represents
the z-coordinate and vz represents the velocity in the z-direction.

 ctmeas

3-59

When specified as a 7-by-N matrix, each column represents a different state vector. N
represents the number of states.

Position coordinates are in meters. Velocity coordinates are in meters/second. Turn rate is
in degrees/second.
Example: [5;0.1;4;-0.2;0.01]
Data Types: double

frame — Measurement frame
'rectangular' (default) | 'spherical'

Measurement frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of the x, y, and z Cartesian coordinates of the
tracked object. When specified as 'spherical', a measurement consists of the azimuth,
elevation, range, and range rate of the tracked object.
Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the global coordinate system, specified as a real-valued 3-
by-1 column vector. Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the global coordinate system, specified as a real-valued 3-
by-1 column vector. Units are in meters/second.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column
specifies the direction of the local x-, y-, and z-axes, respectively, with respect to the
global coordinate system.
Data Types: double

3 Functions in Automated Driving System Toolbox

3-60

measurementParameters — Measurement parameters
structure

Measurement parameters, specified as a structure. The fields of the structure are:

measurementParameters struct

Parameter Definition Default
OriginPosition Sensor position with respect

to the global coordinate
system, specified as a real-
valued 3-by-1 column vector.
Units are in meters.

[0;0;0]

OriginVelocity Sensor velocity with respect
to the global coordinate
system, specified as a real-
valued 3-by-1 column vector.
Units are in m/s.

[0;0;0]

Orientation Local sensor coordinate
axes, specified as a 3-by-3
orthogonal matrix. Each
column specifies the
direction of the local x-, y-,
and z-axes, respectively,
with respect to the global
coordinate system.

eye(3)

HasVelocity Indicates whether
measurements contain
velocity or range rate
components, specified as
true or false.

false when frame
argument is
'rectangular' and true
when frame argument is
'spherical'

HasElevation Indicates whether
measurements contain
elevation components,
specified as true or false.

true

Data Types: struct

 ctmeas

3-61

Output Arguments
measurement — Measurement vector
N-by-1 column vector

Measurement vector, returned as an N-by-1 column vector. The form of the measurement
depends upon which syntax you use.

• When the syntax does not use the measurementParameters argument, the
measurement vector is [x,y,z] when the frame input argument is set to
'rectangular' and [az;el;r;rr] when the frame is set to 'spherical'.

• When the syntax uses the measurementParameters argument, the size of the
measurement vector depends on the values of the frame, HasVelocity, and
HasElevation fields in the measurementParameters structure.

frame measurement
'spherical' Specifies the azimuth angle, az,

elevation angle, el, range, r, and range
rate, rr, of the object with respect to the
local ego coordinate system. Positive
values for range rate indicate that an
object is moving away from the sensor.

Spherical measurements

 HasElevation
 false true
HasVelo
city

false [az;r] [az;el;
r]

true [az;r;r
r]

[az;el;
r;rr]

Angle units are in degrees, range units
are in meters, and range rate units are
in m/s.

3 Functions in Automated Driving System Toolbox

3-62

frame measurement
'rectangular Specifies the Cartesian position and

velocity coordinates of the tracked
object with respect to the ego
coordinate system.

Rectangular measurements

HasVelocit
y

false [x;y;y]
true [x;vx;y,v

y;z;vz]

Position units are in meters and velocity
units are in m/s.

Data Types: double

Definitions

Azimuth and Elevation Angle Definitions
Define the azimuth and elevation angles used in Automated Driving System Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal
projection onto the xy plane. The angle is positive in going from the x axis toward the y
axis. Azimuth angles lie between –180 and 180 degrees. The elevation angle is the angle
between the vector and its orthogonal projection onto the xy-plane. The angle is positive
when going toward the positive z-axis from the xy plane.

 ctmeas

3-63

3 Functions in Automated Driving System Toolbox

3-64

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac |
constvel | constveljac | ctmeasjac | cvmeas | cvmeasjac

Classes
trackingEKF | trackingKF | trackingUKF

Introduced in R2017a

 ctmeas

3-65

ctmeasjac
Jacobian of measurement function for constant turn-rate motion

Syntax
measurementjac = ctmeasjac(state)
measurementjac = ctmeasjac(state,frame)
measurementjac = ctmeasjac(state,frame,sensorpos)
measurementjac = ctmeasjac(state,frame,sensorpos,sensorvel)
measurementjac = ctmeasjac(state,frame,sensorpos,sensorvel,laxes)
measurementjac = ctmeasjac(state,measurementParameters)

Description
measurementjac = ctmeasjac(state) returns the measurement Jacobian,
measurementjac, for a constant turn-rate Kalman filter motion model in rectangular
coordinates. state specifies the current state of the track.

measurementjac = ctmeasjac(state,frame) also specifies the measurement
coordinate system, frame.

measurementjac = ctmeasjac(state,frame,sensorpos) also specifies the sensor
position, sensorpos.

measurementjac = ctmeasjac(state,frame,sensorpos,sensorvel) also
specifies the sensor velocity, sensorvel.

measurementjac = ctmeasjac(state,frame,sensorpos,sensorvel,laxes) also
specifies the local sensor axes orientation, laxes.

measurementjac = ctmeasjac(state,measurementParameters) specifies the
measurement parameters, measurementParameters.

Examples

3 Functions in Automated Driving System Toolbox

3-66

Measurement Jacobian of Constant Turn-Rate Motion in Rectangular Frame

Define the state of an object in 2-D constant turn-rate motion. The state is the position
and velocity in each dimension, and the turn rate. Construct the measurement Jacobian in
rectangular coordinates.

state = [1;10;2;20;5];
jacobian = ctmeasjac(state)

jacobian = 3×5

 1 0 0 0 0
 0 0 1 0 0
 0 0 0 0 0

Measurement Jacobian of Constant Turn-Rate Motion in Spherical Frame

Define the state of an object in 2-D constant turn-rate motion. The state is the position
and velocity in each dimension, and the turn rate. Compute the measurement Jacobian
with respect to spherical coordinates.

state = [1;10;2;20;5];
measurementjac = ctmeasjac(state,'spherical')

measurementjac = 4×5

 -22.9183 0 11.4592 0 0
 0 0 0 0 0
 0.4472 0 0.8944 0 0
 0.0000 0.4472 0.0000 0.8944 0

Measurement Jacobian of Constant Turn-Rate Object in Translated Spherical
Frame

Define the state of an object in 2-D constant turn-rate motion. The state is the position
and velocity in each dimension, and the turn rate. Compute the measurement Jacobian
with respect to spherical coordinates centered at [5;-20;0].

 ctmeasjac

3-67

state = [1;10;2;20;5];
sensorpos = [5;-20;0];
measurementjac = ctmeasjac(state,'spherical',sensorpos)

measurementjac = 4×5

 -2.5210 0 -0.4584 0 0
 0 0 0 0 0
 -0.1789 0 0.9839 0 0
 0.5903 -0.1789 0.1073 0.9839 0

Measurement Jacobian of Constant Turn-Rate Object Using Measurement
Parameters

Define the state of an object in 2-D constant turn-rate motion. The state is the position
and velocity in each dimension, and the turn rate. Compute the measurement Jacobian
with respect to spherical coordinates centered at [25;-40;0].

state2d = [1;10;2;20;5];
sensorpos = [25,-40,0].';
frame = 'spherical';
sensorvel = [0;5;0];
laxes = eye(3);
measurementjac = ctmeasjac(state2d,frame,sensorpos,sensorvel,laxes)

measurementjac = 4×5

 -1.0284 0 -0.5876 0 0
 0 0 0 0 0
 -0.4961 0 0.8682 0 0
 0.2894 -0.4961 0.1654 0.8682 0

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos,'OriginVelocity',sensorvel, ...
 'Orientation',laxes);
measurementjac = ctmeasjac(state2d,measparm)

measurementjac = 4×5

3 Functions in Automated Driving System Toolbox

3-68

 -1.0284 0 -0.5876 0 0
 0 0 0 0 0
 -0.4961 0 0.8682 0 0
 0.2894 -0.4961 0.1654 0.8682 0

Input Arguments
state — State vector
real-valued 5-element vector | real-valued 7-element vector | 5-by-N real-valued matrix |
7-by-N real-valued matrix

State vector for a constant turn-rate motion model in two or three spatial dimensions,
specified as a real-valued vector or matrix.

• When specified as a 5-element vector, the state vector describes 2-D motion in the x-y
plane. You can specify the state vector as a row or column vector. The components of
the state vector are [x;vx;y;vy;omega] where x represents the x-coordinate and vx
represents the velocity in the x-direction. y represents the y-coordinate and vy
represents the velocity in the y-direction. omega represents the turn rate.

When specified as a 5-by-N matrix, each column represents a different state vector N
represents the number of states.

• When specified as a 7-element vector, the state vector describes 3-D motion. You can
specify the state vector as a row or column vector. The components of the state vector
are [x;vx;y;vy;omega;z;vz] where x represents the x-coordinate and vx
represents the velocity in the x-direction. y represents the y-coordinate and vy
represents the velocity in the y-direction. omega represents the turn rate. z represents
the z-coordinate and vz represents the velocity in the z-direction.

When specified as a 7-by-N matrix, each column represents a different state vector. N
represents the number of states.

Position coordinates are in meters. Velocity coordinates are in meters/second. Turn rate is
in degrees/second.
Example: [5;0.1;4;-0.2;0.01]
Data Types: double

 ctmeasjac

3-69

frame — Measurement frame
'rectangular' (default) | 'spherical'

Measurement frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of the x, y, and z Cartesian coordinates of the
tracked object. When specified as 'spherical', a measurement consists of the azimuth,
elevation, range, and range rate of the tracked object.
Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the global coordinate system, specified as a real-valued 3-
by-1 column vector. Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the global coordinate system, specified as a real-valued 3-
by-1 column vector. Units are in meters/second.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column
specifies the direction of the local x-, y-, and z-axes, respectively, with respect to the
global coordinate system.
Data Types: double

measurementParameters — Measurement parameters
structure

Measurement parameters, specified as a structure. The fields of the structure are:

3 Functions in Automated Driving System Toolbox

3-70

measurementParameters struct

Parameter Definition Default
OriginPosition Sensor position with respect

to the global coordinate
system, specified as a real-
valued 3-by-1 column vector.
Units are in meters.

[0;0;0]

OriginVelocity Sensor velocity with respect
to the global coordinate
system, specified as a real-
valued 3-by-1 column vector.
Units are in m/s.

[0;0;0]

Orientation Local sensor coordinate
axes, specified as a 3-by-3
orthogonal matrix. Each
column specifies the
direction of the local x-, y-,
and z-axes, respectively,
with respect to the global
coordinate system.

eye(3)

HasVelocity Indicates whether
measurements contain
velocity or range rate
components, specified as
true or false.

false when frame
argument is
'rectangular' and true
when frame argument is
'spherical'

HasElevation Indicates whether
measurements contain
elevation components,
specified as true or false.

true

Data Types: struct

Output Arguments
measurementjac — Measurement Jacobian
real-valued 3-by-5 matrix | real-valued 4-by-5 matrix

 ctmeasjac

3-71

Measurement Jacobian, returned as a real-valued 3-by-5 or 4-by-5 matrix. The row
dimension and interpretation depend on value of the frame argument.

Frame Measurement Jacobian
'rectangular' Jacobian of the measurements [x;y;z]

with respect to the state vector. The
measurement vector is with respect to the
local coordinate system. Coordinates are in
meters.

'spherical' Jacobian of the measurement vector
[az;el;r;rr] with respect to the state
vector. Measurement vector components
specify the azimuth angle, elevation angle,
range, and range rate of the object with
respect to the local sensor coordinate
system. Angle units are in degrees. Range
units are in meters and range rate units are
in meters/second.

Definitions

Azimuth and Elevation Angle Definitions
Define the azimuth and elevation angles used in Automated Driving System Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal
projection onto the xy plane. The angle is positive in going from the x axis toward the y
axis. Azimuth angles lie between –180 and 180 degrees. The elevation angle is the angle
between the vector and its orthogonal projection onto the xy-plane. The angle is positive
when going toward the positive z-axis from the xy plane.

3 Functions in Automated Driving System Toolbox

3-72

 ctmeasjac

3-73

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac |
constvel | constveljac | ctmeas | cvmeas | cvmeasjac

Classes
trackingEKF | trackingKF | trackingUKF

Introduced in R2017a

3 Functions in Automated Driving System Toolbox

3-74

cvmeas
Measurement function for constant velocity motion

Syntax
measurement = cvmeas(state)
measurement = cvmeas(state,frame)
measurement = cvmeas(state,frame,sensorpos)
measurement = cvmeas(state,frame,sensorpos,sensorvel)
measurement = cvmeas(state,frame,sensorpos,sensorvel,laxes)
measurement = cvmeas(state,measurementParameters)

Description
measurement = cvmeas(state) returns the measurement for a constant-velocity
Kalman filter motion model in rectangular coordinates. The state argument specifies the
current state of the tracking filter.

measurement = cvmeas(state,frame) also specifies the measurement coordinate
system, frame.

measurement = cvmeas(state,frame,sensorpos) also specifies the sensor
position, sensorpos.

measurement = cvmeas(state,frame,sensorpos,sensorvel) also specifies the
sensor velocity, sensorvel.

measurement = cvmeas(state,frame,sensorpos,sensorvel,laxes) specifies
the local sensor axes orientation, laxes.

measurement = cvmeas(state,measurementParameters) specifies the
measurement parameters, measurementParameters.

Examples

 cvmeas

3-75

Create Measurement from Constant-Velocity Object in Rectangular Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and
velocity in both dimensions. The measurements are in rectangular coordinates.

state = [1;10;2;20];
measurement = cvmeas(state)

measurement = 3×1

 1
 2
 0

The z-component of the measurement is zero.

Create Measurement from Constant Velocity Object in Spherical Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and
velocity in each spatial dimension. The measurements are in spherical coordinates.

state = [1;10;2;20];
measurement = cvmeas(state,'spherical')

measurement = 4×1

 63.4349
 0
 2.2361
 22.3607

The elevation of the measurement is zero and the range rate is positive. These results
indicate that the object is moving away from the sensor.

3 Functions in Automated Driving System Toolbox

3-76

Create Measurement from Constant-Velocity Object in Translated Spherical
Frame

Define the state of an object in 2-D constant-velocity motion. The state consists of position
and velocity in each spatial dimension. The measurements are in spherical coordinates
with respect to a frame located at (20;40;0) meters.

state = [1;10;2;20];
measurement = cvmeas(state,'spherical',[20;40;0])

measurement = 4×1

 -116.5651
 0
 42.4853
 -22.3607

The elevation of the measurement is zero and the range rate is negative. These results
indicate that the object is moving toward the sensor.

Create Measurement from Constant-Velocity Object Using Measurement
Parameters

Define the state of an object in 2-D constant-velocity motion. The state consists of position
and velocity in each spatial dimension. The measurements are in spherical coordinates
with respect to a frame located at (20;40;0) meters.

state2d = [1;10;2;20];
frame = 'spherical';
sensorpos = [20;40;0];
sensorvel = [0;5;0];
laxes = eye(3);
measurement = cvmeas(state2d,frame,sensorpos,sensorvel,laxes)

measurement = 4×1

 -116.5651
 0
 42.4853
 -17.8885

 cvmeas

3-77

The elevation of the measurement is zero and the range rate is negative. These results
indicate that the object is moving toward the sensor.

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos,'OriginVelocity',sensorvel, ...
 'Orientation',laxes);
measurement = cvmeas(state2d,measparm)

measurement = 4×1

 -116.5651
 0
 42.4853
 -17.8885

Input Arguments
state — Kalman filter state vector
real-valued 2N-element vector

Kalman filter state vector for constant-velocity motion, specified as a real-valued 2N-
element column vector where N is the number of spatial degrees of freedom of motion.
For each spatial degree of motion, the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx]
2-D [x;vx;y;vy]
3-D [x;vx;y;vy;z;vz]

For example, x represents the x-coordinate and vx represents the velocity in the x-
direction. If the motion model is 1-D, values along the y and z axes are assumed to be
zero. If the motion model is 2-D, values along the z axis are assumed to be zero. Position
coordinates are in meters and velocity coordinates are in meters/sec.
Example: [5;.1;0;-.2;-3;.05]
Data Types: single | double

3 Functions in Automated Driving System Toolbox

3-78

frame — Measurement frame
'rectangular' (default) | 'spherical'

Measurement frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of the x, y, and z Cartesian coordinates of the
tracked object. When specified as 'spherical', a measurement consists of the azimuth,
elevation, range, and range rate of the tracked object.
Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the global coordinate system, specified as a real-valued 3-
by-1 column vector. Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the global coordinate system, specified as a real-valued 3-
by-1 column vector. Units are in meters/second.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column
specifies the direction of the local x-, y-, and z-axes, respectively, with respect to the
global coordinate system.
Data Types: double

measurementParameters — Measurement parameters
structure

Measurement parameters, specified as a structure. The fields of the structure are:

 cvmeas

3-79

measurementParameters struct

Parameter Definition Default
OriginPosition Sensor position with respect

to the global coordinate
system, specified as a real-
valued 3-by-1 column vector.
Units are in meters.

[0;0;0]

OriginVelocity Sensor velocity with respect
to the global coordinate
system, specified as a real-
valued 3-by-1 column vector.
Units are in m/s.

[0;0;0]

Orientation Local sensor coordinate
axes, specified as a 3-by-3
orthogonal matrix. Each
column specifies the
direction of the local x-, y-,
and z-axes, respectively,
with respect to the global
coordinate system.

eye(3)

HasVelocity Indicates whether
measurements contain
velocity or range rate
components, specified as
true or false.

false when frame
argument is
'rectangular' and true
when frame argument is
'spherical'

HasElevation Indicates whether
measurements contain
elevation components,
specified as true or false.

true

Data Types: struct

Output Arguments
measurement — Measurement vector
N-by-1 column vector

3 Functions in Automated Driving System Toolbox

3-80

Measurement vector, returned as an N-by-1 column vector. The form of the measurement
depends upon which syntax you use.

• When the syntax does not use the measurementParameters argument, the
measurement vector is [x,y,z] when the frame input argument is set to
'rectangular' and [az;el;r;rr] when the frame is set to 'spherical'.

• When the syntax uses the measurementParameters argument, the size of the
measurement vector depends on the values of the frame, HasVelocity, and
HasElevation fields in the measurementParameters structure.

frame measurement
'spherical' Specifies the azimuth angle, az,

elevation angle, el, range, r, and range
rate, rr, of the object with respect to the
local ego coordinate system. Positive
values for range rate indicate that an
object is moving away from the sensor.

Spherical measurements

 HasElevation
 false true
HasVelo
city

false [az;r] [az;el;
r]

true [az;r;r
r]

[az;el;
r;rr]

Angle units are in degrees, range units
are in meters, and range rate units are
in m/s.

 cvmeas

3-81

frame measurement
'rectangular Specifies the Cartesian position and

velocity coordinates of the tracked
object with respect to the ego
coordinate system.

Rectangular measurements

HasVelocit
y

false [x;y;y]
true [x;vx;y,v

y;z;vz]

Position units are in meters and velocity
units are in m/s.

Data Types: double

Definitions

Azimuth and Elevation Angle Definitions
Define the azimuth and elevation angles used in Automated Driving System Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal
projection onto the xy plane. The angle is positive in going from the x axis toward the y
axis. Azimuth angles lie between –180 and 180 degrees. The elevation angle is the angle
between the vector and its orthogonal projection onto the xy-plane. The angle is positive
when going toward the positive z-axis from the xy plane.

3 Functions in Automated Driving System Toolbox

3-82

 cvmeas

3-83

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac |
constvel | constveljac | ctmeas | ctmeasjac | cvmeasjac

Classes
trackingEKF | trackingKF | trackingUKF

Introduced in R2017a

3 Functions in Automated Driving System Toolbox

3-84

cvmeasjac
Jacobian of measurement function for constant velocity motion

Syntax
measurementjac = cvmeasjac(state)
measurementjac = cvmeasjac(state,frame)
measurementjac = cvmeasjac(state,frame,sensorpos)
measurementjac = cvmeasjac(state,frame,sensorpos,sensorvel)
measurementjac = cvmeasjac(state,frame,sensorpos,sensorvel,laxes)
measurementjac = cvmeasjac(state,measurementParameters)

Description
measurementjac = cvmeasjac(state) returns the measurement Jacobian for
constant-velocity Kalman filter motion model in rectangular coordinates. state specifies
the current state of the tracking filter.

measurementjac = cvmeasjac(state,frame) also specifies the measurement
coordinate system, frame.

measurementjac = cvmeasjac(state,frame,sensorpos) also specifies the sensor
position, sensorpos.

measurementjac = cvmeasjac(state,frame,sensorpos,sensorvel) also
specifies the sensor velocity, sensorvel.

measurementjac = cvmeasjac(state,frame,sensorpos,sensorvel,laxes) also
specifies the local sensor axes orientation, laxes.

measurementjac = cvmeasjac(state,measurementParameters) specifies the
measurement parameters, measurementParameters.

Examples

 cvmeasjac

3-85

Measurement Jacobian of Constant-Velocity Object in Rectangular Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and
velocity in each spatial dimension. Construct the measurement Jacobian in rectangular
coordinates.

state = [1;10;2;20];
jacobian = cvmeasjac(state)

jacobian = 3×4

 1 0 0 0
 0 0 1 0
 0 0 0 0

Measurement Jacobian of Constant-Velocity Motion in Spherical Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and
velocity in each dimension. Compute the measurement Jacobian with respect to spherical
coordinates.

state = [1;10;2;20];
measurementjac = cvmeasjac(state,'spherical')

measurementjac = 4×4

 -22.9183 0 11.4592 0
 0 0 0 0
 0.4472 0 0.8944 0
 0.0000 0.4472 0.0000 0.8944

Measurement Jacobian of Constant-Velocity Object in Translated Spherical Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and
velocity in each spatial dimension. Compute the measurement Jacobian with respect to
spherical coordinates centered at (5;-20;0) meters.

3 Functions in Automated Driving System Toolbox

3-86

state = [1;10;2;20];
sensorpos = [5;-20;0];
measurementjac = cvmeasjac(state,'spherical',sensorpos)

measurementjac = 4×4

 -2.5210 0 -0.4584 0
 0 0 0 0
 -0.1789 0 0.9839 0
 0.5903 -0.1789 0.1073 0.9839

Create Measurement Jacobian for Constant-Velocity Object Using Measurement
Parameters

Define the state of an object in 2-D constant-velocity motion. The state consists of position
and velocity in each spatial dimension. The measurements are in spherical coordinates
with respect to a frame located at (20;40;0) meters.

state2d = [1;10;2;20];
frame = 'spherical';
sensorpos = [20;40;0];
sensorvel = [0;5;0];
laxes = eye(3);
measurementjac = cvmeasjac(state2d,frame,sensorpos,sensorvel,laxes)

measurementjac = 4×4

 1.2062 0 -0.6031 0
 0 0 0 0
 -0.4472 0 -0.8944 0
 0.0471 -0.4472 -0.0235 -0.8944

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos,'OriginVelocity',sensorvel, ...
 'Orientation',laxes);
measurementjac = cvmeasjac(state2d,measparm)

measurementjac = 4×4

 cvmeasjac

3-87

 1.2062 0 -0.6031 0
 0 0 0 0
 -0.4472 0 -0.8944 0
 0.0471 -0.4472 -0.0235 -0.8944

Input Arguments
state — Kalman filter state vector
real-valued 2N-element vector

Kalman filter state vector for constant-velocity motion, specified as a real-valued 2N-
element column vector where N is the number of spatial degrees of freedom of motion.
For each spatial degree of motion, the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx]
2-D [x;vx;y;vy]
3-D [x;vx;y;vy;z;vz]

For example, x represents the x-coordinate and vx represents the velocity in the x-
direction. If the motion model is 1-D, values along the y and z axes are assumed to be
zero. If the motion model is 2-D, values along the z axis are assumed to be zero. Position
coordinates are in meters and velocity coordinates are in meters/sec.
Example: [5;.1;0;-.2;-3;.05]
Data Types: single | double

frame — Measurement frame
'rectangular' (default) | 'spherical'

Measurement frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of the x, y, and z Cartesian coordinates of the
tracked object. When specified as 'spherical', a measurement consists of the azimuth,
elevation, range, and range rate of the tracked object.
Data Types: char

3 Functions in Automated Driving System Toolbox

3-88

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the global coordinate system, specified as a real-valued 3-
by-1 column vector. Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the global coordinate system, specified as a real-valued 3-
by-1 column vector. Units are in meters/second.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column
specifies the direction of the local x-, y-, and z-axes, respectively, with respect to the
global coordinate system.
Data Types: double

measurementParameters — Measurement parameters
structure

Measurement parameters, specified as a structure. The fields of the structure are:

 cvmeasjac

3-89

measurementParameters struct

Parameter Definition Default
OriginPosition Sensor position with respect

to the global coordinate
system, specified as a real-
valued 3-by-1 column vector.
Units are in meters.

[0;0;0]

OriginVelocity Sensor velocity with respect
to the global coordinate
system, specified as a real-
valued 3-by-1 column vector.
Units are in m/s.

[0;0;0]

Orientation Local sensor coordinate
axes, specified as a 3-by-3
orthogonal matrix. Each
column specifies the
direction of the local x-, y-,
and z-axes, respectively,
with respect to the global
coordinate system.

eye(3)

HasVelocity Indicates whether
measurements contain
velocity or range rate
components, specified as
true or false.

false when frame
argument is
'rectangular' and true
when frame argument is
'spherical'

HasElevation Indicates whether
measurements contain
elevation components,
specified as true or false.

true

Data Types: struct

Output Arguments
measurementjac — Measurement Jacobian
real-valued 3-by-N matrix | real-valued 4-by-N matrix

3 Functions in Automated Driving System Toolbox

3-90

Measurement Jacobian, specified as a real-valued 3-by-N or 4-by-N matrix. N is the
dimension of the state vector. The first dimension and meaning depend on value of the
frame argument.

Frame Measurement Jacobian
'rectangular' Jacobian of the measurements [x;y;z]

with respect to the state vector. The
measurement vector is with respect to the
local coordinate system. Coordinates are in
meters.

'spherical' Jacobian of the measurement vector
[az;el;r;rr] with respect to the state
vector. Measurement vector components
specify the azimuth angle, elevation angle,
range, and range rate of the object with
respect to the local sensor coordinate
system. Angle units are in degrees. Range
units are in meters and range rate units are
in meters/second.

Definitions

Azimuth and Elevation Angle Definitions
Define the azimuth and elevation angles used in Automated Driving System Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal
projection onto the xy plane. The angle is positive in going from the x axis toward the y
axis. Azimuth angles lie between –180 and 180 degrees. The elevation angle is the angle
between the vector and its orthogonal projection onto the xy-plane. The angle is positive
when going toward the positive z-axis from the xy plane.

 cvmeasjac

3-91

3 Functions in Automated Driving System Toolbox

3-92

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac |
constvel | constveljac | ctmeas | ctmeasjac | cvmeas

Classes
trackingEKF | trackingKF | trackingUKF

Introduced in R2017a

 cvmeasjac

3-93

estimateMonoCameraParameters
Estimate extrinsic monocular camera parameters using checkerboard

Syntax
[pitch,yaw,roll,height] = estimateMonoCameraParameters(intrinsics,
imagePoints,worldPoints,patternOriginHeight)
[pitch,yaw,roll,height] = estimateMonoCameraParameters(___ ,
Name,Value)

Description
[pitch,yaw,roll,height] = estimateMonoCameraParameters(intrinsics,
imagePoints,worldPoints,patternOriginHeight) estimates the extrinsic
parameters of a monocular camera using the intrinsic parameters of the camera and a
checkerboard calibration pattern. The returned extrinsic parameters define the yaw,
pitch, and roll rotation angles between the camera coordinate system (Computer Vision
System Toolbox) and vehicle coordinate system on page 3-103 axes. Also defined is the
height of the camera above the ground. Specify the intrinsic parameters, the image and
world coordinates of corner points in the checkerboard pattern, and the height of the
checkerboard pattern's origin above the ground.

By default, the function assumes that the camera is facing forward and that the
checkerboard pattern is parallel with the ground. For all possible camera and
checkerboard placements, see “Calibrate a Monocular Camera”.

[pitch,yaw,roll,height] = estimateMonoCameraParameters(___ ,
Name,Value) specifies options using one or more name-value pairs, in addition to the
inputs and outputs from the previous syntax. For example, you can specify the orientation
or position of the checkerboard pattern.

Examples

3 Functions in Automated Driving System Toolbox

3-94

Configure Monocular Camera Using Checkerboard Pattern

Configure a monocular fisheye camera by removing lens distortion and then estimating
the camera's extrinsic parameters. Use an image of a checkerboard as the calibration
pattern. For a more detailed look at how to configure a monocular camera that has a
fisheye lens, see the “Configure Monocular Fisheye Camera” example.

Load the intrinsic parameters of a monocular camera that has a fisheye lens.
intrinsics is a fisheyeIntrinsics object.

ld = load('fisheyeCameraIntrinsics');
intrinsics = ld.intrinsics;

Load an image of a checkerboard pattern that is placed flat on the ground. This image is
for illustrative purposes and was not taken from a camera mounted to the vehicle. In a
camera mounted to the vehicle, the X-axis of the pattern points to the right of the vehicle,
and the Y-axis of the pattern points to the camera. Display the image.

imageFileName = fullfile(toolboxdir('driving'),'drivingdata','checkerboard.png');
I = imread(imageFileName);
imshow(I)

 estimateMonoCameraParameters

3-95

Warning: Image is too big to fit on screen; displaying at 33%

Detect the coordinates of the checkerboard corners in the image.

[imagePoints,boardSize] = detectCheckerboardPoints(I);

Generate the corresponding world coordinates of the corners.

squareSize = 0.029; % Square size in meters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);

Estimate the extrinsic parameters required to configure the monoCamera object. Because
the checkerboard pattern is directly on the ground, set the height of the pattern's origin
to 0.

3 Functions in Automated Driving System Toolbox

3-96

patternOriginHeight = 0;
[pitch,yaw,roll,height] = estimateMonoCameraParameters(intrinsics, ...
 imagePoints,worldPoints,patternOriginHeight);

Because monoCamera does not accept fisheyeIntrinsics objects, remove distortion
from the image and compute new intrinsic parameters from the undistorted image.
camIntrinsics is an cameraIntrinsics object. Display the image to confirm
distortion is removed.

[undistortedI,camIntrinsics] = undistortFisheyeImage(I,intrinsics,'Output','full');
imshow(undistortedI)

Warning: Image is too big to fit on screen; displaying at 17%

 estimateMonoCameraParameters

3-97

Configure the monocular camera using the estimated parameters.

monoCam = monoCamera(camIntrinsics,height,'Pitch',pitch,'Yaw',yaw,'Roll',roll)

monoCam =
 monoCamera with properties:

 Intrinsics: [1×1 cameraIntrinsics]
 WorldUnits: 'meters'
 Height: 0.4447
 Pitch: 21.8459
 Yaw: -3.6130
 Roll: -3.1707
 SensorLocation: [0 0]

Input Arguments
intrinsics — Intrinsic camera parameters
cameraIntrinsics object | fisheyeIntrinsics object

Intrinsic camera parameters, specified as a cameraIntrinsics or
fisheyeIntrinsics object.

Checkerboard pattern images produced by these cameras can include lens distortion,
which can affect the accuracy of corner point detections. To remove lens distortion and
compute new intrinsic parameters, use these functions:

• For cameraIntrinsics objects, use undistortImage.
• For fisheyeIntrinsics objects, use undistortFisheyeImage.

imagePoints — Image coordinates of checkerboard corner points
M-by-2 matrix

Image coordinates of checkerboard corner points, specified as an M-by-2 matrix of M
number of [x y] vectors. These points must come from an image captured by a monocular
camera. To detect these points in an image, use the detectCheckerboardPoints
function.

3 Functions in Automated Driving System Toolbox

3-98

estimateMonoCameraParameters assumes that all points in worldPoints are in the
(XP, YP) plane and that M is greater than or equal to 4. To specify the height of the (XP, YP)
plane above the ground, use patternOriginHeight.
Data Types: single | double

worldPoints — World coordinates of corner points in checkerboard
M-by-2 matrix

World coordinates of the corner points in the checkerboard, specified as an M-by-2 matrix
of M number of [x y] vectors.

estimateMonoCameraParameters assumes that all points in worldPoints are in the
(XP, YP) plane and that M is greater than or equal to 4. To specify the height of the (XP, YP)
plane above the ground, use patternOriginHeight.

Point (0,0) corresponds to the bottom-right corner of the top-left square of the
checkerboard.

Data Types: single | double

patternOriginHeight — Height of checkerboard pattern's origin
nonnegative scalar

Height of the checkerboard pattern's origin above the ground, specified as a nonnegative
scalar. The origin is the bottom-right corner of the top-left square of the checkerboard. If
the pattern is on the ground, set patternOriginHeight to 0.

 estimateMonoCameraParameters

3-99

Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'PatternOrientation','vertical','PatternPosition','right'

PatternOrientation — Orientation of checkerboard pattern
'horizontal' (default) | 'vertical'

Orientation of the checkerboard pattern relative to the ground, specified as the comma-
separated pair consisting of 'PatternOrientation' and one of the following:

• 'horizontal' — Checkerboard pattern is parallel to the ground.
• 'vertical' — Checkerboard pattern is perpendicular to the ground.

PatternPosition — Position of checkerboard pattern
'front' (default) | 'back' | 'left' | 'right'

Position of the checkerboard pattern relative to the ground, specified as the comma-
separated pair consisting of 'PatternPosition' and one of the following:

3 Functions in Automated Driving System Toolbox

3-100

• 'front' — Checkerboard pattern is in front of the vehicle.
• 'back' — Checkerboard pattern is behind the vehicle.
• 'left' — Checkerboard pattern is to the left of the vehicle.
• 'right' — Checkerboard pattern is to the right of the vehicle.

Output Arguments
pitch — Pitch angle
scalar

Pitch angle between the horizontal plane of the vehicle and the optical axis of the camera,
returned as a scalar in degrees. pitch uses the ISO convention for rotation, with a
clockwise positive angle direction when looking in the positive direction of the vehicle's
YV-axis.

For more details, see “Angle Directions” on page 3-104.

yaw — Yaw angle
scalar

Yaw angle between the XV-axis of the vehicle and the optical axis of the camera, returned
as a scalar in degrees. yaw uses the ISO convention for rotation, with a clockwise positive
angle direction when looking in the positive direction of the vehicle's ZV-axis.

 estimateMonoCameraParameters

3-101

For more details, see “Angle Directions” on page 3-104.

roll — Roll angle
scalar

Roll angle of the camera around its optical axis, returned as a scalar in degrees. roll
uses the ISO convention for rotation, with a clockwise positive angle direction when
looking in the positive direction of the vehicle's XV-axis.

For more details, see “Angle Directions” on page 3-104.

3 Functions in Automated Driving System Toolbox

3-102

height — Perpendicular height from ground to camera
nonnegative scalar

Perpendicular height from the ground to the focal point of the camera, returned as a
nonnegative scalar in world units, such as meters.

Definitions

Vehicle Coordinate System
In the vehicle coordinate system (XV, YV, ZV) defined by a monoCamera object:

• The XV-axis points forward from the vehicle.
• The YV-axis points to the left, as viewed when facing forward.
• The ZV-axis points up from the ground to maintain the right-handed coordinate system.

By default, the origin of this coordinate system is on the road surface, directly below the
camera center (focal point of camera).

 estimateMonoCameraParameters

3-103

To obtain more reliable results from estimateMonoCameraParameters, the
checkerboard pattern must be placed in precise locations relative to this coordinate
system. For more details, see “Calibrate a Monocular Camera”.

Angle Directions
The monocular camera sensor uses clockwise positive angle directions when looking in
the positive direction of the Z-, Y-, and X-axes, respectively.

3 Functions in Automated Driving System Toolbox

3-104

 estimateMonoCameraParameters

3-105

See Also
Apps
Camera Calibrator

Functions
detectCheckerboardPoints | estimateCameraParameters |
estimateFisheyeParameters | extrinsics | generateCheckerboardPoints

Objects
cameraIntrinsics | fisheyeIntrinsics | monoCamera

Topics
“Calibrate a Monocular Camera”
“Configure Monocular Fisheye Camera”
“Coordinate Systems in Automated Driving System Toolbox”

Introduced in R2018b

3 Functions in Automated Driving System Toolbox

3-106

evaluateLaneBoundaries
Evaluate lane boundary models against ground truth

Syntax
numMatches = evaluateLaneBoundaries(boundaries,
worldGroundTruthPoints,threshold)
[numMatches,numMissed,numFalsePositives] = evaluateLaneBoundaries(
___)
[___] = evaluateLaneBoundaries(___ ,xWorld)

[___] = evaluateLaneBoundaries(boundaries,groundTruthBoundaries,
threshold)
[___ ,assignments] = evaluateLaneBoundaries(___)

Description
numMatches = evaluateLaneBoundaries(boundaries,
worldGroundTruthPoints,threshold) returns the total number of lane boundary
matches (true positives) within the lateral distance threshold by comparing the input
boundary models, boundaries, against ground truth data.

[numMatches,numMissed,numFalsePositives] = evaluateLaneBoundaries(
___) also returns the total number of misses (false negatives) and false positives, using
the previous inputs.

[___] = evaluateLaneBoundaries(___ ,xWorld) specifies the x-axis points at
which to perform the comparisons. Points specified in worldGroundTruthPoints are
linearly interpolated at the given x-axis locations.

[___] = evaluateLaneBoundaries(boundaries,groundTruthBoundaries,
threshold) compares the boundaries against ground truth models that are specified in
an array of lane boundary objects or a cell array of arrays.

[___ ,assignments] = evaluateLaneBoundaries(___) also returns the
assignment indices that are specified in groundTruthBoundaries. Each boundary is

 evaluateLaneBoundaries

3-107

matched to the corresponding class assignment in groundTruthBoundaries. The kth
boundary in boundaries is matched to the assignments(k) element of
worldGroundTruthPoints. Zero indicates a false positive (no match found).

Examples

Compare Lane Boundary Models

Create a set of ground truth points, add noise to simulate actual lane boundary points,
and compare the simulated data to the model.

Create a set of points representing ground truth by using parabolic parameters.

parabolaParams1 = [-0.001 0.01 0.5];
parabolaParams2 = [0.001 0.02 0.52];
x = (0:0.1:20)';
y1 = polyval(parabolaParams1,x);
y2 = polyval(parabolaParams1,x);

Add noise relative to the offset parameter.

y1 = y1 + 0.10*parabolaParams1(3)*(rand(length(y1),1)-0.5);
y2 = y2 + 0.10*parabolaParams2(3)*(rand(length(y2),1)-0.5);

Create a set of test boundary models.

testlbs = parabolicLaneBoundary([-0.002 0.01 0.5;
 -0.001 0.02 0.45;
 -0.001 0.01 0.5;
 0.000 0.02 0.52;
 -0.001 0.01 0.51]);

Compare the boundary models to the ground truth points. Calculate the precision and
sensitivity of the models based on the number of matches, misses, and false positives.

threshold = 0.1;
[numMatches,numMisses,numFalsePositives,~] = ...
 evaluateLaneBoundaries(testlbs,{[x y1],[x y2]},threshold);

disp('Precision:');

Precision:

3 Functions in Automated Driving System Toolbox

3-108

disp(numMatches/(numMatches+numFalsePositives));

 0.4000

disp('Sensitivity/Recall:');

Sensitivity/Recall:

disp(numMatches/(numMatches+numMisses));

 1

Input Arguments
worldGroundTruthPoints — Ground truth points of lane boundaries
[x y] array | cell array of [x y] arrays

Ground truth points of lane boundaries, specified as an [x y] array or cell array of [x
y] arrays. The x-axis points must be unique and in the same coordinate system as the
boundary models. A lane boundary must contain at least two points, but for a robust
comparison, four or more points are recommended. Each element of the cell array
represents a separate lane boundary.

threshold — Maximum lateral distance from ground truth
numeric scalar

Maximum lateral distance between a model and ground truth point in order for that point
to be considered a valid match (true positive), specified as a numeric scalar.

boundaries — Lane boundary models
array of parabolicLaneBoundary objects | array of cubicLaneBoundary objects

Lane boundary models, specified as an array of parabolicLaneBoundary objects or
cubicLaneBoundary objects. Lane boundary models contain the following properties:

• Parameters — A vector corresponding to the coefficients of the boundary model. The
size of the vector depends on the degree of polynomial for the model.

 evaluateLaneBoundaries

3-109

Lane Boundary Object Parameters
parabolicLaneBoundary [A B C], corresponding to coefficients

of a second-degree polynomial equation
of the form y = Ax2 + Bx + C

cubicLaneBoundary [A B C D], corresponding to
coefficients of a third-degree polynomial
equation of the form y = Ax3 + Bx2 + Cx
+ D

• BoundaryType — A LaneBoundaryType enumeration of supported lane boundaries:

• Unmarked
• Solid
• Dashed
• BottsDots
• DoubleSolid

Specify a lane boundary type as LaneBoundaryType.BoundaryType. For example:

LaneBoundaryType.BottsDots
• Strength — The ratio of the number of unique x-axis locations on the boundary to the

total number of points along the line based on the XExtent property.
• XExtent — A two-element vector describing the minimum and maximum x-axis

locations for the boundary points.

xWorld — x-axis locations of boundary
vector of numeric scalars

x-axis locations of boundary, specified as a vector of numeric scalars. Points in
worldGroundTruthPoints are linearly interpolated at the given x-axis locations.
Boundaries outside of these locations are excluded and count as false negatives.

groundTruthBoundaries — Ground truth boundary models
array of parabolicLaneBoundary or cubicLaneBoundary objects | cell array of
parabolicLaneBoundary or cubicLaneBoundary arrays

Ground truth boundary models, specified as an array of parabolicLaneBoundary or
cubicLaneBoundary objects or cell array of parabolicLaneBoundary or
cubicLaneBoundary arrays.

3 Functions in Automated Driving System Toolbox

3-110

Output Arguments
numMatches — Number of matches (true positives)
numeric scalar

Number of matches (true positives), returned as a numeric scalar.

numMissed — Number of misses (false negatives)
numeric scalar

Number of misses (false negatives), returned as a numeric scalar.

numFalsePositives — Number of false positives
numeric scalar

Number of false positives, returned as a numeric scalar.

assignments — Assignment indices for ground truth boundaries
cell array of numeric arrays

Assignment indices for ground truth boundaries, returned as a cell array of numeric
arrays. Each boundary is matched to the corresponding assignment in
groundTruthBoundaries. The kth boundary in boundaries is matched to the
assignments(k) element of worldGroundTruthPoints. Zero indicates a false positive
(no match found).

See Also
Functions
findCubicLaneBoundaries | findParabolicLaneBoundaries

Objects
cubicLaneBoundary | parabolicLaneBoundary

Apps
Ground Truth Labeler

Introduced in R2017a

 evaluateLaneBoundaries

3-111

findCubicLaneBoundaries
Find boundaries using cubic model

Syntax
boundaries = findCubicLaneBoundaries(xyBoundaryPoints,
approxBoundaryWidth)
[boundaries,boundaryPoints] = findCubicLaneBoundaries(
xyBoundaryPoints,approxBoundaryWidth)
[___] = findCubicLaneBoundaries(___ ,Name,Value)

Description
boundaries = findCubicLaneBoundaries(xyBoundaryPoints,
approxBoundaryWidth) uses the random sample consensus (RANSAC) algorithm to
find cubic lane boundary models that fit a set of boundary points and an approximate
width. Each model in the returned array of cubicLaneBoundary objects contains the [A
B C D] coefficients of its third-degree polynomial equation and the strength of the
boundary estimate.

[boundaries,boundaryPoints] = findCubicLaneBoundaries(
xyBoundaryPoints,approxBoundaryWidth) also returns a cell array of inlier
boundary points for each boundary model found, using the previous input arguments.

[___] = findCubicLaneBoundaries(___ ,Name,Value) uses options specified by
one or more Name,Value pair arguments, with any of the preceding syntaxes.

Examples

Find Cubic Lane Boundaries in Bird's-Eye-View Image

Find lanes in an image by using cubic lane boundary models. Overlay the identified lanes
on the original image and on a bird's-eye-view transformation of the image.

3 Functions in Automated Driving System Toolbox

3-112

Load an image of a road with lanes. The image was obtained from a camera sensor
mounted on the front of a vehicle.

I = imread('road.png');

Transform the image into a bird's-eye-view image by using a preconfigured sensor object.
This object models the sensor that captured the original image.

bevSensor = load('birdsEyeConfig');
birdsEyeImage = transformImage(bevSensor.birdsEyeConfig,I);
imshow(birdsEyeImage)

 findCubicLaneBoundaries

3-113

3 Functions in Automated Driving System Toolbox

3-114

Set the approximate lane marker width in world units (meters).

approxBoundaryWidth = 0.25;

Detect lane features and display them as a black-and-white image.

birdsEyeBW = segmentLaneMarkerRidge(rgb2gray(birdsEyeImage), ...
 bevSensor.birdsEyeConfig,approxBoundaryWidth);
imshow(birdsEyeBW)

 findCubicLaneBoundaries

3-115

3 Functions in Automated Driving System Toolbox

3-116

Obtain lane candidate points in world coordinates.

[imageX,imageY] = find(birdsEyeBW);
xyBoundaryPoints = imageToVehicle(bevSensor.birdsEyeConfig,[imageY,imageX]);

Find lane boundaries in the image by using the findCubicLaneBoundaries function.
By default, the function returns a maximum of two lane boundaries. The boundaries are
stored in an array of cubicLaneBoundary objects.

boundaries = findCubicLaneBoundaries(xyBoundaryPoints,approxBoundaryWidth);

Use insertLaneBoundary to overlay the lanes on the original image. The XPoints
vector represents the lane points, in meters, that are within range of the ego vehicle's
sensor. Specify the lanes in different colors. By default, lanes are yellow.

XPoints = 3:30;

figure
sensor = bevSensor.birdsEyeConfig.Sensor;
lanesI = insertLaneBoundary(I,boundaries(1),sensor,XPoints);
lanesI = insertLaneBoundary(lanesI,boundaries(2),sensor,XPoints,'Color','green');
imshow(lanesI)

 findCubicLaneBoundaries

3-117

View the lanes in the bird's-eye-view image.

figure
BEconfig = bevSensor.birdsEyeConfig;
lanesBEI = insertLaneBoundary(birdsEyeImage,boundaries(1),BEconfig,XPoints);
lanesBEI = insertLaneBoundary(lanesBEI,boundaries(2),BEconfig,XPoints,'Color','green');
imshow(lanesBEI)

3 Functions in Automated Driving System Toolbox

3-118

 findCubicLaneBoundaries

3-119

Input Arguments
xyBoundaryPoints — Candidate boundary points
[x y] vector

Candidate boundary points, specified as an [x y] vector in vehicle coordinates. To obtain
the vehicle coordinates for points in a birdsEyeView image, use the imageToVehicle
function to convert the bird's-eye-view image coordinates to vehicle coordinates.

approxBoundaryWidth — Approximate boundary width
scalar

Approximate boundary width, specified as a scalar in world units. The width is a
horizontal y-axis measurement.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MaxSamplingAttempts',200

MaxNumBoundaries — Maximum number of lane boundaries
2 (default) | positive integer

Maximum number of lane boundaries that the function attempts to find, specified as the
comma-separated pair consisting of 'MaxNumBoundaries' and a positive integer.

ValidateBoundaryFcn — Function to validate boundary model
function handle

Function to validate the boundary model, specified as the comma-separated pair
consisting of 'ValidateBoundaryFcn' and a function handle. The specified function
returns logical 1 (true) if the boundary model is accepted and logical 0 (false) otherwise.
Use this function to reject invalid boundaries. The function must be of the form:

isValid = validateBoundaryFcn(parameters)

3 Functions in Automated Driving System Toolbox

3-120

parameters is a vector corresponding to the three parabolic parameters.

The default validation function always returns 1 (true).

MaxSamplingAttempts — Maximum number of sampling attempts
100 (default) | positive integer

Maximum number of attempts to find a sample of points that yields a valid cubic
boundary, specified as the comma-separated pair consisting of
'MaxSamplingAttempts' and a function handle. findCubicLaneBoundaries uses the
fitPolynomialRANSAC function to sample from the set of boundary points and fit a
cubic boundary line.

Output Arguments
boundaries — Lane boundary models
array of cubicLaneBoundary objects

Lane boundary models, returned as an array of cubicLaneBoundary objects. Lane
boundary objects contain the following properties:

• Parameters — A four-element vector, [A B C D], that corresponds to the four
coefficients of a third-degree polynomial equation in general form: y = Ax3 + Bx2 + Cx
+ D.

• BoundaryType — A LaneBoundaryType of supported lane boundaries. The
supported lane boundary types are:

• Unmarked
• Solid
• Dashed
• BottsDots
• DoubleSolid

Specify a lane boundary type as LaneBoundaryType.BoundaryType. For example:

LaneBoundaryType.BottsDots

• Strength — A ratio of the number of unique x-axis locations on the boundary to the
total number of points along the line, based on the XExtent property.

 findCubicLaneBoundaries

3-121

• XExtent — A two-element vector describing the minimum and maximum x-axis
locations for the boundary points.

boundaryPoints — Inlier boundary points
cell array of [x y] values

Inlier boundary points, returned as a cell array of [x y] values. Each element of the cell
array corresponds to the same element in the array of cubicLaneBoundary objects.

Tips
• To fit a single boundary model to a double lane marker, set the

approxBoundaryWidth argument to be large enough to include the width spanning
both lane markers.

Algorithms
• This function uses fitPolynomialRANSAC to find cubic models. Because this

algorithm uses random sampling, the output can vary between runs.
• The maxDistance parameter of fitPolynomialRANSAC is set to half the width
specified in the approxBoundaryWidth argument. Points are considered inliers if
they are within the boundary width. The function obtains the final boundary model
using a least-squares fit on the inlier points.

See Also
birdsEyePlot | birdsEyeView | cubicLaneBoundary | fitPolynomialRANSAC |
monoCamera | segmentLaneMarkerRidge

Introduced in R2018a

3 Functions in Automated Driving System Toolbox

3-122

findParabolicLaneBoundaries
Find boundaries using parabolic model

Syntax
boundaries = findParabolicLaneBoundaries(xyBoundaryPoints,
approxBoundaryWidth)
[boundaries,boundaryPoints] = findParabolicLaneBoundaries(
xyBoundaryPoints,approxBoundaryWidth)
[___] = findParabolicLaneBoundaries(___ ,Name,Value)

Description
boundaries = findParabolicLaneBoundaries(xyBoundaryPoints,
approxBoundaryWidth) uses the random sample consensus (RANSAC) algorithm to
find parabolic lane boundary models that fit a set of boundary points and an approximate
width. Each model in the returned array of parabolicLaneBoundary objects contains
the [A B C] coefficients of its second-degree polynomial equation and the strength of the
boundary estimate.

[boundaries,boundaryPoints] = findParabolicLaneBoundaries(
xyBoundaryPoints,approxBoundaryWidth) also returns a cell array of inlier
boundary points for each boundary model found.

[___] = findParabolicLaneBoundaries(___ ,Name,Value) uses options
specified by one or more Name,Value pair arguments, with any of the preceding
syntaxes.

Examples

Find Parabolic Lane Boundaries in Bird's-Eye-View Image

Find lanes in an image by using parabolic lane boundary models. Overlay the identified
lanes on the original image and on a bird's-eye-view transformation of the image.

 findParabolicLaneBoundaries

3-123

Load an image of a road with lanes. The image was obtained from a camera sensor
mounted on the front of a vehicle.

I = imread('road.png');

Transform the image into a bird's-eye-view image by using a preconfigured sensor object.
This object models the sensor that captured the original image.

bevSensor = load('birdsEyeConfig');
birdsEyeImage = transformImage(bevSensor.birdsEyeConfig,I);
imshow(birdsEyeImage)

3 Functions in Automated Driving System Toolbox

3-124

 findParabolicLaneBoundaries

3-125

Set the approximate lane marker width in world units (meters).

approxBoundaryWidth = 0.25;

Detect lane features and display them as a black-and-white image.

birdsEyeBW = segmentLaneMarkerRidge(rgb2gray(birdsEyeImage), ...
 bevSensor.birdsEyeConfig,approxBoundaryWidth);
imshow(birdsEyeBW)

3 Functions in Automated Driving System Toolbox

3-126

 findParabolicLaneBoundaries

3-127

Obtain lane candidate points in world coordinates.

[imageX,imageY] = find(birdsEyeBW);
xyBoundaryPoints = imageToVehicle(bevSensor.birdsEyeConfig,[imageY,imageX]);

Find lane boundaries in the image by using the findParabolicLaneBoundaries
function. By default, the function returns a maximum of two lane boundaries. The
boundaries are stored in an array of parabolicLaneBoundary objects.

boundaries = findParabolicLaneBoundaries(xyBoundaryPoints,approxBoundaryWidth);

Use insertLaneBoundary to overlay the lanes on the original image. The XPoints
vector represents the lane points, in meters, that are within range of the ego vehicle's
sensor. Specify the lanes in different colors. By default, lanes are yellow.

XPoints = 3:30;

figure
sensor = bevSensor.birdsEyeConfig.Sensor;
lanesI = insertLaneBoundary(I,boundaries(1),sensor,XPoints);
lanesI = insertLaneBoundary(lanesI,boundaries(2),sensor,XPoints,'Color','green');
imshow(lanesI)

3 Functions in Automated Driving System Toolbox

3-128

View the lanes in the bird's-eye-view image.

figure
BEconfig = bevSensor.birdsEyeConfig;
lanesBEI = insertLaneBoundary(birdsEyeImage,boundaries(1),BEconfig,XPoints);
lanesBEI = insertLaneBoundary(lanesBEI,boundaries(2),BEconfig,XPoints,'Color','green');
imshow(lanesBEI)

 findParabolicLaneBoundaries

3-129

3 Functions in Automated Driving System Toolbox

3-130

Input Arguments
xyBoundaryPoints — Candidate boundary points
[x y] vector

Candidate boundary points, specified as an [x y] vector in vehicle coordinates. To obtain
the vehicle coordinates for points in a birdsEyeView image, use the imageToVehicle
function to convert the bird's-eye-view image coordinates to vehicle coordinates.

approxBoundaryWidth — Approximate boundary width
scalar

Approximate boundary width, specified as a scalar in world units. The width is a
horizontal y-axis measurement.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MaxSamplingAttempts',200

MaxNumBoundaries — Maximum number of lane boundaries
2 (default) | positive integer

Maximum number of lane boundaries that the function attempts to find, specified as the
comma-separated pair consisting of 'MaxNumBoundaries' and a positive integer.

ValidateBoundaryFcn — Function to validate boundary model
function handle

Function to validate the boundary model, specified as the comma-separated pair
consisting of 'ValidateBoundaryFcn' and a function handle. The specified function
returns logical 1 (true) if the boundary model is accepted and logical 0 (false) otherwise.
Use this function to reject invalid boundaries. The function must be of the form:

isValid = validateBoundaryFcn(parameters)

 findParabolicLaneBoundaries

3-131

parameters is a vector corresponding to the three parabolic parameters.

The default validation function always returns 1 (true).

MaxSamplingAttempts — Maximum number of sampling attempts
100 (default) | positive integer

Maximum number of attempts to find a sample of points that yields a valid parabolic
boundary, specified as the comma-separated pair consisting of
'MaxSamplingAttempts' and a function handle. findParabolicLaneBoundaries
uses the fitPolynomialRANSAC function to sample from the set of boundary points and
fit a parabolic boundary line.

Output Arguments
boundaries — Lane boundary models
array of parabolicLaneBoundary objects

Lane boundary models, returned as an array of parabolicLaneBoundary objects. Lane
boundary objects contain the following properties:

• Parameters — A three-element vector, [A B C], that corresponds to the three
coefficients of a second-degree polynomial equation in general form: y = Ax2 + Bx + C.

• BoundaryType — A LaneBoundaryType of supported lane boundaries. The
supported lane boundary types are:

• Unmarked
• Solid
• Dashed
• BottsDots
• DoubleSolid

Specify a lane boundary type as LaneBoundaryType.BoundaryType. For example:

LaneBoundaryType.BottsDots
• Strength — A ratio of the number of unique x-axis locations on the boundary to the

total number of points along the line, based on the XExtent property.
• XExtent — A two-element vector describing the minimum and maximum x-axis

locations for the boundary points.

3 Functions in Automated Driving System Toolbox

3-132

boundaryPoints — Inlier boundary points
cell array of [x y] values

Inlier boundary points, returned as a cell array of [x y] values. Each element of the cell
array corresponds to the same element in the array of parabolicLaneBoundary
objects.

Tips
• To fit a single boundary model to a double lane marker, set the

approxBoundaryWidth argument to be large enough to include the width spanning
both lane markers.

Algorithms
• This function uses fitPolynomialRANSAC to find parabolic models. Because this

algorithm uses random sampling, the output can vary between runs.
• The maxDistance parameter of fitPolynomialRANSAC is set to half the width
specified in the approxBoundaryWidth argument. Points are considered inliers if
they are within the boundary width. The function obtains the final boundary model
using a least-squares fit on the inlier points.

See Also
birdsEyePlot | birdsEyeView | fitPolynomialRANSAC | monoCamera |
parabolicLaneBoundary | segmentLaneMarkerRidge

Introduced in R2017a

 findParabolicLaneBoundaries

3-133

getTrackPositions
Returns updated track positions and position covariance matrix

Syntax
position = getTrackPositions(tracks,positionSelector)
[position,positionCovariances] = getTrackPositions(tracks,
positionSelector)

Description
position = getTrackPositions(tracks,positionSelector) returns a matrix of
track positions. Each row contains the position of a tracked object.

[position,positionCovariances] = getTrackPositions(tracks,
positionSelector) returns a matrix of track positions.

Examples

Find Position of 3-D Constant-Acceleration Object

Create an extended Kalman filter tracker for 3-D constant-acceleration motion.

tracker = multiObjectTracker('FilterInitializationFcn',@initcaekf);

Update the tracker with a single detection and get the tracks output.

detection = objectDetection(0,[10;-20;4],'ObjectClassID',3);
tracks = updateTracks(tracker,detection,0)

tracks = struct with fields:
 TrackID: 1
 Time: 0
 Age: 1
 State: [9x1 double]

3 Functions in Automated Driving System Toolbox

3-134

 StateCovariance: [9x9 double]
 IsConfirmed: 1
 IsCoasted: 0
 ObjectClassID: 3
 ObjectAttributes: {}

Obtain the position vector from the track state.

positionSelector = [1 0 0 0 0 0 0 0 0; 0 0 0 1 0 0 0 0 0; 0 0 0 0 0 0 1 0 0];
position = getTrackPositions(tracks, positionSelector)

position = 1×3

 10 -20 4

Find Position and Covariance of 3-D Constant-Velocity Object

Create an extended Kalman filter tracker for 3-D constant-velocity motion.

tracker = multiObjectTracker('FilterInitializationFcn',@initcvekf);

Update the tracker with a single detection and get the tracks output.

detection = objectDetection(0,[10;3;-7],'ObjectClassID',3);
tracks = updateTracks(tracker,detection,0)

tracks = struct with fields:
 TrackID: 1
 Time: 0
 Age: 1
 State: [6x1 double]
 StateCovariance: [6x6 double]
 IsConfirmed: 1
 IsCoasted: 0
 ObjectClassID: 3
 ObjectAttributes: {}

Obtain the position vector and position covariance for that track

 getTrackPositions

3-135

positionSelector = [1 0 0 0 0 0; 0 0 1 0 0 0; 0 0 0 0 1 0];
[position,positionCovariance] = getTrackPositions(tracks,positionSelector)

position = 1×3

 10 3 -7

positionCovariance = 3×3

 1 0 0
 0 1 0
 0 0 1

Input Arguments
tracks — Track data structure
struct array

Tracked object, specified as a struct array. A track struct array is an array of MATLAB
struct types containing sufficient information to obtain the track position vector and,
optionally, the position covariance matrix. At a minimum, the struct must contain a
State column vector field and a positive-definite StateCovariance matrix field. For an
example of a track struct used by Automated Driving System Toolbox, examine the
output argument, tracks, returned by the updateTracks function when used with a
multiObjectTracker System object.

positionSelector — Position selection matrix
D-by-N real-valued matrix.

Position selector, specified as a D-by-N real-valued matrix of ones and zeros. D is the
number of dimensions of the tracker. N is the size of the state vector. Using this matrix,
the function extracts track positions from the state vector. Multiply the state vector by
position selector matrix returns positions. The same selector is applied to all object
tracks.

3 Functions in Automated Driving System Toolbox

3-136

Output Arguments
position — Positions of tracked objects
real-valued M-by-D matrix

Positions of tracked objects at last update time, returned as a real-valued M-by-D matrix.
D represents the number of position elements. M represents the number of tracks.

positionCovariances — Position covariance matrices of tracked objects
real-valued D-by-D-M array

Position covariance matrices of tracked objects, returned as a real-valued D-by-D-M array.
D represents the number of position elements. M represents the number of tracks. Each
D-by-D submatrix is a position covariance matrix for a track.

Definitions

Position Selector for 2-Dimensional Motion
Show the position selection matrix for two-dimensional motion when the state consists of
the position and velocity.

1 0 0 0

0 0 1 0

È

Î
Í

˘

˚
˙

Position Selector for 3-Dimensional Motion
Show the position selection matrix for three-dimensional motion when the state consists
of the position and velocity.

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 getTrackPositions

3-137

Position Selector for 3-Dimensional Motion with Acceleration
Show the position selection matrix for three-dimensional motion when the state consists
of the position, velocity, and acceleration.

1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
getTrackVelocities | initcaekf | initcakf | initcaukf | initctekf |
initctukf | initcvkf | initcvukf

Classes
objectDetection

System Objects
multiObjectTracker

Introduced in R2017a

3 Functions in Automated Driving System Toolbox

3-138

getTrackVelocities
Obtain updated track velocities and velocity covariance matrix

Syntax
velocity = getTrackVelocities(tracks,velocitySelector)
[velocity,velocityCovariances] = getTrackVelocities(tracks,
velocitySelector)

Description
velocity = getTrackVelocities(tracks,velocitySelector) returns velocities
of tracked objects.

[velocity,velocityCovariances] = getTrackVelocities(tracks,
velocitySelector) also returns the track velocity covariance matrices.

Examples

Find Velocity of 3-D Constant-Acceleration Object

Create an extended Kalman filter tracker for 3-D constant-acceleration motion.

tracker = multiObjectTracker('FilterInitializationFcn',@initcaekf);

Initialize the tracker with a one detection.

detection = objectDetection(0,[10;-20;4],'ObjectClassID',3);
tracks = updateTracks(tracker,detection,0);

Add a second detection at a later time and translated position.

detection = objectDetection(0.1,[10.3;-20.2;4],'ObjectClassID',3);
tracks = updateTracks(tracker,detection,0.2);

 getTrackVelocities

3-139

Obtain the velocity vector from the track state.

velocitySelector = [0 1 0 0 0 0 0 0 0; 0 0 0 0 1 0 0 0 0; 0 0 0 0 0 0 0 1 0];
velocity = getTrackVelocities(tracks,velocitySelector)

velocity = 1×3

 1.0093 -0.6728 0

Velocity and Covariance of 3-D Constant-Acceleration Object

Create an extended Kalman filter tracker for 3-D constant-acceleration motion.

tracker = multiObjectTracker('FilterInitializationFcn',@initcaekf);

Initialize the tracker with a one detection.

detection = objectDetection(0,[10;-20;4],'ObjectClassID',3);
tracks = updateTracks(tracker,detection,0);

Add a second detection at a later time and translated position.

detection = objectDetection(0.1,[10.3;-20.2;4.3],'ObjectClassID',3);
tracks = updateTracks(tracker,detection,0.2);

Obtain the velocity vector from the track state.

velocitySelector = [0 1 0 0 0 0 0 0 0; 0 0 0 0 1 0 0 0 0; 0 0 0 0 0 0 0 1 0];
[velocity,velocityCovariance] = getTrackVelocities(tracks,velocitySelector)

velocity = 1×3

 1.0093 -0.6728 1.0093

velocityCovariance = 3×3

 70.0685 0 0
 0 70.0685 0
 0 0 70.0685

3 Functions in Automated Driving System Toolbox

3-140

Input Arguments
tracks — Track data structure
struct array

Tracked object, specified as a struct array. A track struct array is an array of MATLAB
struct types containing sufficient information to obtain the track position vector and,
optionally, the position covariance matrix. At a minimum, the struct must contain a
State column vector field and a positive-definite StateCovariance matrix field. For an
example of a track struct used by Automated Driving System Toolbox, examine the
output argument, tracks, returned by the updateTracks function when used with a
multiObjectTracker System object.

velocitySelector — Velocity selection matrix
D-by-N real-valued matrix.

Velocity selector, specified as a D-by-N real-valued matrix of ones and zeros. D is the
number of dimensions of the tracker. N is the size of the state vector. Using this matrix,
the function extracts track velocities from the state vector. Multiply the state vector by
velocity selector matrix returns velocities. The same selector is applied to all object
tracks.

Output Arguments
velocity — Velocities of tracked objects
real-valued 1-by-D vector | real-valued M-by-D matrix

Velocities of tracked objects at last update time, returned as a 1-by-D vector or a real-
valued M-by-D matrix. D represents the number of velocity elements. M represents the
number of tracks.

velocityCovariances — Velocity covariance matrices of tracked objects
real-valued D-by-D-matrix | real-valued D-by-D-by-M array

Velocity covariance matrices of tracked objects, returned as a real-valued D-by-D-matrix
or a real-valued D-by-D-by-M array. D represents the number of velocity elements. M
represents the number of tracks. Each D-by-D submatrix is a velocity covariance matrix
for a track.

 getTrackVelocities

3-141

Definitions

Velocity Selector for 2-Dimensional Motion
Show the velocity selection matrix for two-dimensional motion when the state consists of
the position and velocity.

0 1 0 0

0 0 0 1

È

Î
Í

˘

˚
˙

Velocity Selector for 3-Dimensional Motion
Show the velocity selection matrix for three-dimensional motion when the state consists
of the position and velocity.

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Velocity Selector for 3-Dimensional Motion with Acceleration
Show the velocity selection matrix for three-dimensional motion when the state consists
of the position, velocity, and acceleration.

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

3 Functions in Automated Driving System Toolbox

3-142

See Also
Functions
getTrackPositions | initcaekf | initcakf | initcaukf | initctekf | initctukf
| initcvkf | initcvukf

Classes
objectDetection

System Objects
multiObjectTracker

Introduced in R2017a

 getTrackVelocities

3-143

initcaekf
Create constant-acceleration extended Kalman filter from detection report

Syntax
filter = initcaekf(detection)

Description
filter = initcaekf(detection) creates and initializes a constant-acceleration
extended Kalman filter from information contained in a detection report. For more
information about the extended Kalman filter, see trackingEKF.

Examples

Initialize 3-D Constant-Acceleration Extended Kalman Filter

Create and initialize a 3-D constant-acceleration extended Kalman filter object from an
initial detection report.

Create the detection report from an initial 3-D measurement, (-200;30;0) , of the object
position. Assume uncorrelated measurement noise.

detection = objectDetection(0,[-200;-30;0],'MeasurementNoise',2.1*eye(3), ...
 'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Car',2});

Create the new filter from the detection report and display its properties.

filter = initcaekf(detection)

filter =
 trackingEKF with properties:

 State: [9x1 double]
 StateCovariance: [9x9 double]

3 Functions in Automated Driving System Toolbox

3-144

 StateTransitionFcn: @constacc
 StateTransitionJacobianFcn: @constaccjac
 ProcessNoise: [3x3 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @cameas
 MeasurementJacobianFcn: @cameasjac
 MeasurementNoise: [3x3 double]
 HasAdditiveMeasurementNoise: 1

Show the filter state.

filter.State

ans = 9×1

 -200
 0
 0
 -30
 0
 0
 0
 0
 0

Show the state covariance matrix.

filter.StateCovariance

ans = 9×9

 2.1000 0 0 0 0 0 0 0 0
 0 100.0000 0 0 0 0 0 0 0
 0 0 100.0000 0 0 0 0 0 0
 0 0 0 2.1000 0 0 0 0 0
 0 0 0 0 100.0000 0 0 0 0
 0 0 0 0 0 100.0000 0 0 0
 0 0 0 0 0 0 2.1000 0 0
 0 0 0 0 0 0 0 100.0000 0
 0 0 0 0 0 0 0 0 100.0000

 initcaekf

3-145

Create 3D Constant Acceleration EKF from Spherical Measurement

Initialize a 3D constant-acceleration extended Kalman filter from an initial detection
report made from an initial measurement in spherical coordinates. If you want to use
spherical coordinates, then you must supply a measurement parameter structure as part
of the detection report with the Frame field set to 'spherical'. Set the azimuth angle

of the target to , the elevation to , the range to 1000 meters, and the range rate to
-4.0 m/s.

frame = 'spherical';
sensorpos = [25,-40,-10].';
sensorvel = [0;5;0];
laxes = eye(3);

Create the measurement parameters structure. Set 'HasVelocity' and
'HasElevation' to true. Then, the measurement vector consists of azimuth, elevation,
range, and range rate.

measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
 'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',true, ...
 'HasElevation',true);
meas = [45;22;1000;-4];
measnoise = diag([3.0,2.5,2,1.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
 measnoise,'MeasurementParameters',measparms)

detection =
 objectDetection with properties:

 Time: 0
 Measurement: [4x1 double]
 MeasurementNoise: [4x4 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {}

filter = initcaekf(detection);

Display the state vector.

3 Functions in Automated Driving System Toolbox

3-146

disp(filter.State)

 680.6180
 -2.6225
 0
 615.6180
 2.3775
 0
 364.6066
 -1.4984
 0

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise',
[1.0 0 0; 0 2.0 0; 0 0 1.5])

Output Arguments
filter — Extended Kalman filter
trackingEKF object

Extended Kalman filter, returned as a trackingEKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and

an acceleration-rate standard deviation of 1 m/s3.
• You can use this function as the FilterInitializationFcn property of a

multiObjectTracker object.

 initcaekf

3-147

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initcakf | initcaukf | initctekf | initctukf | initcvekf | initcvkf |
initcvukf

Classes
objectDetection | trackingEKF | trackingKF | trackingUKF

System Objects
multiObjectTracker

Introduced in R2017a

3 Functions in Automated Driving System Toolbox

3-148

initcakf
Create constant-acceleration linear Kalman filter from detection report

Syntax
filter = initcakf(detection)

Description
filter = initcakf(detection) creates and initializes a constant-acceleration linear
Kalman filter from information contained in a detection report. For more
information about the linear Kalman filter, see trackingKF.

Examples

Initialize 2-D Constant-Acceleration Linear Kalman Filter

Create and initialize a 2-D constant-acceleration linear Kalman filter object from an initial
detection report.

Create the detection report from an initial 2-D measurement, (10,−5), of the object
position. Assume uncorrelated measurement noise.

detection = objectDetection(0,[10;-5],'MeasurementNoise',eye(2), ...
 'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Car',5});

Create the new filter from the detection report.

filter = initcakf(detection);

Show the filter state.

filter.State

ans = 6×1

 initcakf

3-149

 10
 0
 0
 -5
 0
 0

Show the state transition model.

filter.StateTransitionModel

ans = 6×6

 1.0000 1.0000 0.5000 0 0 0
 0 1.0000 1.0000 0 0 0
 0 0 1.0000 0 0 0
 0 0 0 1.0000 1.0000 0.5000
 0 0 0 0 1.0000 1.0000
 0 0 0 0 0 1.0000

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise',
[1.0 0 0; 0 2.0 0; 0 0 1.5])

Output Arguments
filter — Linear Kalman filter
trackingKF object

Linear Kalman filter, returned as a trackingKF object.

3 Functions in Automated Driving System Toolbox

3-150

Algorithms
• The function computes the process noise matrix assuming a one-second time step and

an acceleration rate standard deviation of 1 m/s3.
• You can use this function as the FilterInitializationFcn property of a

multiObjectTracker object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initcaekf | initcaukf | initctekf | initctukf | initcvekf | initcvkf |
initcvukf

Classes
objectDetection | trackingEKF | trackingKF | trackingUKF

System Objects
multiObjectTracker

Introduced in R2017a

 initcakf

3-151

initcaukf
Create constant-acceleration unscented Kalman filter from detection report

Syntax
filter = initcaukf(detection)

Description
filter = initcaukf(detection) creates and initializes a constant-acceleration
unscented Kalman filter from information contained in a detection report. For more
information about the unscented Kalman filter, see trackingUKF.

Examples

Initialize 3-D Constant-Acceleration Unscented Kalman Filter

Create and initialize a 3-D constant-acceleration unscented Kalman filter object from an
initial detection report.

Create the detection report from an initial 3-D measurement, (-200,-30,5), of the object
position. Assume uncorrelated measurement noise.

detection = objectDetection(0,[-200;-30;5],'MeasurementNoise',2.0*eye(3), ...
 'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Car',2});

Create the new filter from the detection report and display the filter properties.

filter = initcaukf(detection)

filter =
 trackingUKF with properties:

 State: [9x1 double]
 StateCovariance: [9x9 double]

3 Functions in Automated Driving System Toolbox

3-152

 StateTransitionFcn: @constacc
 ProcessNoise: [3x3 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @cameas
 MeasurementNoise: [3x3 double]
 HasAdditiveMeasurementNoise: 1

 Alpha: 1.0000e-03
 Beta: 2
 Kappa: 0

Show the state.

filter.State

ans = 9×1

 -200
 0
 0
 -30
 0
 0
 5
 0
 0

Show the state covariance matrix.

filter.StateCovariance

ans = 9×9

 2 0 0 0 0 0 0 0 0
 0 100 0 0 0 0 0 0 0
 0 0 100 0 0 0 0 0 0
 0 0 0 2 0 0 0 0 0
 0 0 0 0 100 0 0 0 0
 0 0 0 0 0 100 0 0 0
 0 0 0 0 0 0 2 0 0
 0 0 0 0 0 0 0 100 0

 initcaukf

3-153

 0 0 0 0 0 0 0 0 100

Create 3D Constant Acceleration UKF from Spherical Measurement

Initialize a 3D constant-acceleration unscented Kalman filter from an initial detection
report made from a measurement in spherical coordinates. If you want to use spherical
coordinates, then you must supply a measurement parameter structure as part of the
detection report with the Frame field set to 'spherical'. Set the azimuth angle of the

target to , and the range to 1000 meters.

frame = 'spherical';
sensorpos = [25,-40,-10].';
sensorvel = [0;5;0];
laxes = eye(3);

Create the measurement structure. Set 'HasVelocity' and 'HasElevation' to
false. Then, the measurement vector consists of azimuth angle and range.

measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
 'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',false, ...
 'HasElevation',false);
meas = [45;1000];
measnoise = diag([3.0,2.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
 measnoise,'MeasurementParameters',measparms)

detection =
 objectDetection with properties:

 Time: 0
 Measurement: [2x1 double]
 MeasurementNoise: [2x2 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {}

filter = initcaukf(detection);

Display the state vector.

3 Functions in Automated Driving System Toolbox

3-154

disp(filter.State)

 732.1068
 0
 0
 667.1068
 0
 0
 -10.0000
 0
 0

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise',
[1.0 0 0; 0 2.0 0; 0 0 1.5])

Output Arguments
filter — Unscented Kalman filter
trackingUKF object

Unscented Kalman filter, returned as a trackingUKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and

an acceleration rate standard deviation of 1 m/s3.
• You can use this function as the FilterInitializationFcn property of a

multiObjectTracker object.

 initcaukf

3-155

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initcaekf | initcakf | initctekf | initctukf | initcvekf | initcvkf |
initcvukf

Classes
objectDetection | trackingEKF | trackingKF | trackingUKF

System Objects
multiObjectTracker

Introduced in R2017a

3 Functions in Automated Driving System Toolbox

3-156

initctekf
Create constant turn-rate extended Kalman filter from detection report

Syntax
filter = initcaekf(detection)

Description
filter = initcaekf(detection) creates and initializes a constant-turn-rate
extended Kalman filter from information contained in a detection report. For more
information about the extended Kalman filter, see trackingEKF.

Examples

Initialize 2-D Constant Turn-Rate Extended Kalman Filter

Create and initialize a 2-D constant turn-rate extended Kalman filter object from an initial
detection report.

Create the detection report from an initial 2-D measurement, (-250,-40), of the object
position. Assume uncorrelated measurement noise.

Extend the measurement to three dimensions by adding a z-component of zero.

detection = objectDetection(0,[-250;-40;0],'MeasurementNoise',2.0*eye(3), ...
 'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Car',2});

Create the new filter from the detection report and display the filter properties.

filter = initctekf(detection)

filter =
 trackingEKF with properties:

 initctekf

3-157

 State: [7x1 double]
 StateCovariance: [7x7 double]

 StateTransitionFcn: @constturn
 StateTransitionJacobianFcn: @constturnjac
 ProcessNoise: [4x4 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @ctmeas
 MeasurementJacobianFcn: @ctmeasjac
 MeasurementNoise: [3x3 double]
 HasAdditiveMeasurementNoise: 1

Show the state.

filter.State

ans = 7×1

 -250
 0
 -40
 0
 0
 0
 0

Show the state covariance matrix.

filter.StateCovariance

ans = 7×7

 2 0 0 0 0 0 0
 0 100 0 0 0 0 0
 0 0 2 0 0 0 0
 0 0 0 100 0 0 0
 0 0 0 0 100 0 0
 0 0 0 0 0 2 0
 0 0 0 0 0 0 100

3 Functions in Automated Driving System Toolbox

3-158

Create 2-D Constant Turnrate EKF from Spherical Measurement

Initialize a 2-D constant-turnrate extended Kalman filter from an initial detection report
made from an initial measurement in spherical coordinates. If you want to use spherical
coordinates, then you must supply a measurement parameter structure as part of the
detection report with the Frame field set to 'spherical'. Set the azimuth angle of the
target to 45 degrees, the range to 1000 meters, and the range rate to -4.0 m/s.

frame = 'spherical';
sensorpos = [25,-40,-10].';
sensorvel = [0;5;0];
laxes = eye(3);

Create the measurement parameters structure. Set 'HasElevation' to false. Then,
the measurement consists of azimuth, range, and range rate.

measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
 'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',true, ...
 'HasElevation',false);
meas = [45;1000;-4];
measnoise = diag([3.0,2,1.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
 measnoise,'MeasurementParameters',measparms)

detection =
 objectDetection with properties:

 Time: 0
 Measurement: [3x1 double]
 MeasurementNoise: [3x3 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {}

filter = initctekf(detection);

Filter state vector.

disp(filter.State)

 732.1068
 -2.8284
 667.1068

 initctekf

3-159

 2.1716
 0
 -10.0000
 0

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise',
[1.0 0 0; 0 2.0 0; 0 0 1.5])

Output Arguments
filter — Extended Kalman filter
trackingEKF object

Extended Kalman filter, returned as a trackingEKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step. The

function assumes an acceleration standard deviation of 1 m/s2, and a turn-rate
acceleration standard deviation of 1°/s2.

• You can use this function as the FilterInitializationFcn property of a
multiObjectTracker object.

3 Functions in Automated Driving System Toolbox

3-160

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initcaekf | initcakf | initcaukf | initctukf | initcvekf | initcvkf |
initcvukf

Classes
objectDetection | trackingEKF | trackingKF | trackingUKF

System Objects
multiObjectTracker

Introduced in R2017a

 initctekf

3-161

initctukf
Create constant turn-rate unscented Kalman filter from detection report

Syntax
filter = initcaukf(detection)

Description
filter = initcaukf(detection) creates and initializes a constant-turn-rate
unscented Kalman filter from information contained in a detection report. For more
information about the unscented Kalman filter, see trackingUKF.

Examples

Initialize 2-D Constant Turn-Rate Unscented Kalman Filter

Create and initialize a 2-D constant turn-rate unscented Kalman filter object from an
initial detection report.

Create the detection report from an initial 2D measurement, (-250,-40), of the object
position. Assume uncorrelated measurement noise.

Extend the measurement to three dimensions by adding a z-component of zero.

detection = objectDetection(0,[-250;-40;0],'MeasurementNoise',2.0*eye(3), ...
 'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Car',2});

Create the new filter from the detection report and display the filter properties.

filter = initctukf(detection)

filter =
 trackingUKF with properties:

3 Functions in Automated Driving System Toolbox

3-162

 State: [7x1 double]
 StateCovariance: [7x7 double]

 StateTransitionFcn: @constturn
 ProcessNoise: [4x4 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @ctmeas
 MeasurementNoise: [3x3 double]
 HasAdditiveMeasurementNoise: 1

 Alpha: 1.0000e-03
 Beta: 2
 Kappa: 0

Show the filter state.

filter.State

ans = 7×1

 -250
 0
 -40
 0
 0
 0
 0

Show the state covariance matrix.

filter.StateCovariance

ans = 7×7

 2 0 0 0 0 0 0
 0 100 0 0 0 0 0
 0 0 2 0 0 0 0
 0 0 0 100 0 0 0
 0 0 0 0 100 0 0
 0 0 0 0 0 2 0
 0 0 0 0 0 0 100

 initctukf

3-163

Create 2-D Constant Turnrate UKF from Spherical Measurement

Initialize a 2-D constant-turnrate extended Kalman filter from an initial detection report
made from an initial measurement in spherical coordinates. If you want to use spherical
coordinates, then you must supply a measurement parameter structure as part of the
detection report with the Frame field set to 'spherical'. Set the azimuth angle of the
target to 45 degrees and the range to 1000 meters.

frame = 'spherical';
sensorpos = [25,-40,-10].';
sensorvel = [0;5;0];
laxes = eye(3);

Create the measurement parameters structure. Set 'HasVelocity' and
'HasElevation' to false. Then, the measurement consists of azimuth and range.

measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
 'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',false, ...
 'HasElevation',false);
meas = [45;1000];
measnoise = diag([3.0,2].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
 measnoise,'MeasurementParameters',measparms)

detection =
 objectDetection with properties:

 Time: 0
 Measurement: [2x1 double]
 MeasurementNoise: [2x2 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {}

filter = initctekf(detection);

Filter state vector.

disp(filter.State)

3 Functions in Automated Driving System Toolbox

3-164

 732.1068
 0
 667.1068
 0
 0
 -10.0000
 0

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise',
[1.0 0 0; 0 2.0 0; 0 0 1.5])

Output Arguments
filter — Unscented Kalman filter
trackingUKF object

Unscented Kalman filter, returned as a trackingUKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step. The

function assumes an acceleration standard deviation of 1 m/s2, and a turn-rate
acceleration standard deviation of 1°/s2.

• You can use this function as the FilterInitializationFcn property of a
multiObjectTracker object.

 initctukf

3-165

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initcaekf | initcakf | initcaukf | initctekf | initcvekf | initcvkf |
initcvukf

Classes
objectDetection | trackingEKF | trackingKF | trackingUKF

System Objects
multiObjectTracker

Introduced in R2017a

3 Functions in Automated Driving System Toolbox

3-166

initcvekf
Create constant-velocity extended Kalman filter from detection report

Syntax
filter = initcvekf(detection)

Description
filter = initcvekf(detection) creates and initializes a constant-velocity extended
Kalman filter from information contained in a detection report. For more
information about the extended Kalman filter, see trackingEKF.

Examples

Initialize 3-D Constant-Velocity Extended Kalman Filter

Create and initialize a 3-D constant-velocity extended Kalman filter object from an initial
detection report.

Create the detection report from an initial 3-D measurement, (10,20,−5), of the object
position.

detection = objectDetection(0,[10;20;-5],'MeasurementNoise',1.5*eye(3), ...
 'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Sports Car',5});

Create the new filter from the detection report.

filter = initcvekf(detection)

filter =
 trackingEKF with properties:

 State: [6x1 double]
 StateCovariance: [6x6 double]

 initcvekf

3-167

 StateTransitionFcn: @constvel
 StateTransitionJacobianFcn: @constveljac
 ProcessNoise: [3x3 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @cvmeas
 MeasurementJacobianFcn: @cvmeasjac
 MeasurementNoise: [3x3 double]
 HasAdditiveMeasurementNoise: 1

Show the filter state.

filter.State

ans = 6×1

 10
 0
 20
 0
 -5
 0

Show the state covariance.

filter.StateCovariance

ans = 6×6

 1.5000 0 0 0 0 0
 0 100.0000 0 0 0 0
 0 0 1.5000 0 0 0
 0 0 0 100.0000 0 0
 0 0 0 0 1.5000 0
 0 0 0 0 0 100.0000

3 Functions in Automated Driving System Toolbox

3-168

Create 3-D Constant Velocity EKF from Spherical Measurement

Initialize a 3-D constant-velocity extended Kalman filter from an initial detection report
made from a 3-D measurement in spherical coordinates. If you want to use spherical
coordinates, then you must supply a measurement parameter structure as part of the
detection report with the Frame field set to 'spherical'. Set the azimuth angle of the
target to 45 degrees, the elevation to -10 degrees, the range to 1000 meters, and the
range rate to -4.0 m/s.

frame = 'spherical';
sensorpos = [25,-40,0].';
sensorvel = [0;5;0];
laxes = eye(3);
measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
 'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',true, ...
 'HasElevation',true);
meas = [45;-10;1000;-4];
measnoise = diag([3.0,2.5,2,1.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
 measnoise,'MeasurementParameters',measparms)

detection =
 objectDetection with properties:

 Time: 0
 Measurement: [4x1 double]
 MeasurementNoise: [4x4 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {}

filter = initcvekf(detection);

Filter state vector.

disp(filter.State)

 721.3642
 -2.7855
 656.3642
 2.2145
 -173.6482
 0.6946

 initcvekf

3-169

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise',
[1.0 0 0; 0 2.0 0; 0 0 1.5])

Output Arguments
filter — Extended Kalman filter
trackingEKF object

Extended Kalman filter, returned as a trackingEKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and

an acceleration standard deviation of 1 m/s2.
• You can use this function as the FilterInitializationFcn property of a

multiObjectTracker object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

3 Functions in Automated Driving System Toolbox

3-170

See Also
Functions
initcaekf | initcakf | initcaukf | initctekf | initctukf | initcvkf |
initcvukf

Classes
objectDetection | trackingEKF | trackingKF | trackingUKF

System Objects
multiObjectTracker

Introduced in R2017a

 initcvekf

3-171

initcvkf
Create constant-velocity linear Kalman filter from detection report

Syntax
filter = initcakf(detection)

Description
filter = initcakf(detection) creates and initializes a constant-velocity linear
Kalman filter from information contained in a detection report. For more
information about the linear Kalman filter, see trackingKF.

Examples

Initialize 2-D Constant-Velocity Linear Kalman Filter

Create and initialize a 2-D linear Kalman filter object from an initial detection report.

Create the detection report from an initial 2-D measurement, (10,20), of the object
position.

detection = objectDetection(0,[10;20],'MeasurementNoise',[1 0.2; 0.2 2], ...
 'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Yellow Car',5});

Create the new track from the detection report.

filter = initcvkf(detection)

filter =
 trackingKF with properties:

 State: [4x1 double]
 StateCovariance: [4x4 double]

3 Functions in Automated Driving System Toolbox

3-172

 MotionModel: '2D Constant Velocity'
 ControlModel: []
 ProcessNoise: [4x4 double]

 MeasurementModel: [2x4 double]
 MeasurementNoise: [2x2 double]

Show the state.

filter.State

ans = 4×1

 10
 0
 20
 0

Show the state transition model.

filter.StateTransitionModel

ans = 4×4

 1 1 0 0
 0 1 0 0
 0 0 1 1
 0 0 0 1

Initialize 3-D Constant-Velocity Linear Kalman Filter

Create and initialize a 3-D linear Kalman filter object from an initial detection report.

Create the detection report from an initial 3-D measurement, (10,20,−5), of the object
position.

detection = objectDetection(0,[10;20;-5],'MeasurementNoise',eye(3), ...
 'SensorIndex', 1,'ObjectClassID',1,'ObjectAttributes',{'Green Car', 5});

Create the new filter from the detection report and display its properties.

 initcvkf

3-173

filter = initcvkf(detection)

filter =
 trackingKF with properties:

 State: [6x1 double]
 StateCovariance: [6x6 double]

 MotionModel: '3D Constant Velocity'
 ControlModel: []
 ProcessNoise: [6x6 double]

 MeasurementModel: [3x6 double]
 MeasurementNoise: [3x3 double]

Show the state.

filter.State

ans = 6×1

 10
 0
 20
 0
 -5
 0

Show the state transition model.

filter.StateTransitionModel

ans = 6×6

 1 1 0 0 0 0
 0 1 0 0 0 0
 0 0 1 1 0 0
 0 0 0 1 0 0
 0 0 0 0 1 1
 0 0 0 0 0 1

3 Functions in Automated Driving System Toolbox

3-174

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise',
[1.0 0 0; 0 2.0 0; 0 0 1.5])

Output Arguments
filter — Linear Kalman filter
trackingKF object

Linear Kalman filter, returned as a trackingKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and

an acceleration standard deviation of 1 m/s2.
• You can use this function as the FilterInitializationFcn property of a

multiObjectTracker object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 initcvkf

3-175

See Also
Functions
initcaekf | initcakf | initcaukf | initctekf | initctukf | initcvekf |
initcvukf

Classes
objectDetection | objectDetection | trackingEKF | trackingKF | trackingUKF

System Objects
multiObjectTracker

Introduced in R2017a

3 Functions in Automated Driving System Toolbox

3-176

initcvukf
Create constant-velocity unscented Kalman filter from detection report

Syntax
filter = initcaukf(detection)

Description
filter = initcaukf(detection) creates and initializes a constant-velocity
unscented Kalman filter from information contained in a detection report. For more
information about the unscented Kalman filter, see trackingUKF.

Examples

Initialize 3-D Constant-Velocity Unscented Kalman Filter

Create and initialize a 3-D constant-velocity unscented Kalman filter object from an initial
detection report.

Create the detection report from an initial 3-D measurement, (10,200,−5), of the object
position.

detection = objectDetection(0,[10;200;-5],'MeasurementNoise',1.5*eye(3), ...
 'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Sports Car',5});

Create the new filter from the detection report and display the filter properties.

filter = initcvukf(detection)

filter =
 trackingUKF with properties:

 State: [6x1 double]
 StateCovariance: [6x6 double]

 initcvukf

3-177

 StateTransitionFcn: @constvel
 ProcessNoise: [3x3 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @cvmeas
 MeasurementNoise: [3x3 double]
 HasAdditiveMeasurementNoise: 1

 Alpha: 1.0000e-03
 Beta: 2
 Kappa: 0

Display the state.

filter.State

ans = 6×1

 10
 0
 200
 0
 -5
 0

Show the state covariance.

filter.StateCovariance

ans = 6×6

 1.5000 0 0 0 0 0
 0 100.0000 0 0 0 0
 0 0 1.5000 0 0 0
 0 0 0 100.0000 0 0
 0 0 0 0 1.5000 0
 0 0 0 0 0 100.0000

3 Functions in Automated Driving System Toolbox

3-178

Create Constant Velocity UKF from Spherical Measurement

Initialize a constant-velocity unscented Kalman filter from an initial detection report made
from an initial measurement in spherical coordinates. Because the object lies in the x-y
plane, no elevation measurement is made. If you want to use spherical coordinates, then
you must supply a measurement parameter structure as part of the detection report with
the Frame field set to 'spherical'. Set the azimuth angle of the target to 45 degrees,
the range to 1000 meters, and the range rate to -4.0 m/s.

frame = 'spherical';
sensorpos = [25,-40,0].';
sensorvel = [0;5;0];
laxes = eye(3);

Create the measurement parameters structure. Set 'HasElevation' to false. Then,
the measurement consists of azimuth, range, and range rate.

measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
 'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',true, ...
 'HasElevation',false);
meas = [45;1000;-4];
measnoise = diag([3.0,2,1.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
 measnoise,'MeasurementParameters',measparms)

detection =
 objectDetection with properties:

 Time: 0
 Measurement: [3x1 double]
 MeasurementNoise: [3x3 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {}

filter = initcvukf(detection);

Display filter state vector.

disp(filter.State)

 732.1068
 -2.8284

 initcvukf

3-179

 667.1068
 2.1716
 0
 0

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise',
[1.0 0 0; 0 2.0 0; 0 0 1.5])

Output Arguments
filter — Unscented Kalman filter
trackingUKF object

Unscented Kalman filter, returned as a trackingUKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and

an acceleration standard deviation of 1 m/s2.
• You can use this function as the FilterInitializationFcn property of a

multiObjectTracker object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

3 Functions in Automated Driving System Toolbox

3-180

See Also
Functions
initcaekf | initcakf | initcaukf | initctekf | initctukf | initcvekf |
initcvkf

Classes
objectDetection | trackingEKF | trackingKF | trackingUKF

System Objects
multiObjectTracker

Introduced in R2017a

 initcvukf

3-181

insertLaneBoundary
Insert lane boundary into image

Syntax
rgb = insertLaneBoundary(I,boundaries,sensor,xVehicle)
rgb = insertLaneBoundary(___ ,Name,Value)

Description
rgb = insertLaneBoundary(I,boundaries,sensor,xVehicle) inserts lane
boundary markings into a truecolor image. The lanes are overlaid on the input road
image, I. This image comes from the sensor specified in the sensor object. xVehicle
specifies the x-coordinates at which to draw the lane markers. The y-coordinates are
calculated based on the parameters of the boundary models in boundaries.

rgb = insertLaneBoundary(___ ,Name,Value) inserts lane boundary markings
with additional options specified by one or more Name,Value pair arguments, using the
previous input arguments.

Examples

Find Parabolic Lane Boundaries in Bird's-Eye-View Image

Find lanes in an image by using parabolic lane boundary models. Overlay the identified
lanes on the original image and on a bird's-eye-view transformation of the image.

Load an image of a road with lanes. The image was obtained from a camera sensor
mounted on the front of a vehicle.

I = imread('road.png');

Transform the image into a bird's-eye-view image by using a preconfigured sensor object.
This object models the sensor that captured the original image.

3 Functions in Automated Driving System Toolbox

3-182

bevSensor = load('birdsEyeConfig');
birdsEyeImage = transformImage(bevSensor.birdsEyeConfig,I);
imshow(birdsEyeImage)

 insertLaneBoundary

3-183

3 Functions in Automated Driving System Toolbox

3-184

Set the approximate lane marker width in world units (meters).

approxBoundaryWidth = 0.25;

Detect lane features and display them as a black-and-white image.

birdsEyeBW = segmentLaneMarkerRidge(rgb2gray(birdsEyeImage), ...
 bevSensor.birdsEyeConfig,approxBoundaryWidth);
imshow(birdsEyeBW)

 insertLaneBoundary

3-185

3 Functions in Automated Driving System Toolbox

3-186

Obtain lane candidate points in world coordinates.

[imageX,imageY] = find(birdsEyeBW);
xyBoundaryPoints = imageToVehicle(bevSensor.birdsEyeConfig,[imageY,imageX]);

Find lane boundaries in the image by using the findParabolicLaneBoundaries
function. By default, the function returns a maximum of two lane boundaries. The
boundaries are stored in an array of parabolicLaneBoundary objects.

boundaries = findParabolicLaneBoundaries(xyBoundaryPoints,approxBoundaryWidth);

Use insertLaneBoundary to overlay the lanes on the original image. The XPoints
vector represents the lane points, in meters, that are within range of the ego vehicle's
sensor. Specify the lanes in different colors. By default, lanes are yellow.

XPoints = 3:30;

figure
sensor = bevSensor.birdsEyeConfig.Sensor;
lanesI = insertLaneBoundary(I,boundaries(1),sensor,XPoints);
lanesI = insertLaneBoundary(lanesI,boundaries(2),sensor,XPoints,'Color','green');
imshow(lanesI)

 insertLaneBoundary

3-187

View the lanes in the bird's-eye-view image.

figure
BEconfig = bevSensor.birdsEyeConfig;
lanesBEI = insertLaneBoundary(birdsEyeImage,boundaries(1),BEconfig,XPoints);
lanesBEI = insertLaneBoundary(lanesBEI,boundaries(2),BEconfig,XPoints,'Color','green');
imshow(lanesBEI)

3 Functions in Automated Driving System Toolbox

3-188

 insertLaneBoundary

3-189

Input Arguments
I — Input road image
truecolor image | grayscale image

Input road image, specified as a truecolor or grayscale image.
Data Types: single | double | int8 | int16 | uint8 | uint16

boundaries — Lane boundary models
array of parabolicLaneBoundary objects | array of cubicLaneBoundary objects

Lane boundary models, specified as an array of parabolicLaneBoundary objects or
cubicLaneBoundary objects. Lane boundary models contain the following properties:

• Parameters — A vector corresponding to the coefficients of the boundary model. The
size of the vector depends on the degree of polynomial for the model.

Lane Boundary Object Parameters
parabolicLaneBoundary [A B C], corresponding to coefficients

of a second-degree polynomial equation
of the form y = Ax2 + Bx + C

cubicLaneBoundary [A B C D], corresponding to
coefficients of a third-degree polynomial
equation of the form y = Ax3 + Bx2 + Cx
+ D

• BoundaryType — A LaneBoundaryType enumeration of supported lane boundaries:

• Unmarked
• Solid
• Dashed
• BottsDots
• DoubleSolid

Specify a lane boundary type as LaneBoundaryType.BoundaryType. For example:

LaneBoundaryType.BottsDots

3 Functions in Automated Driving System Toolbox

3-190

• Strength — The ratio of the number of unique x-axis locations on the boundary to the
total number of points along the line based on the XExtent property.

• XExtent — A two-element vector describing the minimum and maximum x-axis
locations for the boundary points.

sensor — Sensor that collects images
birdsEyeView object | monoCamera object

Sensor that collects images, specified as either a birdsEyeView or monoCamera object.

xVehicle — x-axis locations of boundary
vector of numeric scalars

x-axis locations at which to display the lane boundaries, specified as a vector of numeric
scalars in vehicle coordinates. The spacing between points controls the spacing between
dashes and dots for the corresponding types of boundaries. To show dashed boundaries
clearly, specify at least four points in xVehicle. If you specify fewer than four points, the
function draws a solid boundary.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Color',[0 1 0]

Color — Color of lane boundaries
'yellow' (default) | character vector | string scalar | [R,G,B] vector of RGB values |
cell array of character vectors | string array | m-by-3 matrix of RGB values

Color of lane boundaries, specified as a character vector, string scalar, or [R,G,B] vector
of RGB values. You can specify specific colors for each boundary in boundaries with a
cell array of character vectors, a string array, or an m-by-3 matrix of RGB values. The
colors correspond to the order of the boundary lanes.

RGB values must be in the range of the image data type.

Supported color values are 'blue', 'green', 'red', 'cyan', 'magenta', 'yellow',
'black', and 'white'.

 insertLaneBoundary

3-191

Example: 'red'
Example: [1,0,0]

LineWidth — Line width for boundary lanes
3 (default) | positive integer

Line width for boundary lanes, specified as a positive integer in pixels.

Output Arguments
rgb — Image with boundary lanes
RGB truecolor image

Image with boundary lanes overlaid, returned as an RGB truecolor image. The output
image class matches the input image, I.

See Also
birdsEyeView | cubicLaneBoundary | fitPolynomialRANSAC | monoCamera |
parabolicLaneBoundary

Introduced in R2017a

3 Functions in Automated Driving System Toolbox

3-192

lateralControllerStanley
Compute steering angle command for path following using Stanley method

Syntax
steerCmd = lateralControllerStanley(refPose,currPose,currVelocity)
steerCmd = lateralControllerStanley(refPose,currPose,currVelocity,
Name,Value)

Description
steerCmd = lateralControllerStanley(refPose,currPose,currVelocity)
computes the steering angle command, in degrees, that adjusts the current pose of a
vehicle to match a reference pose, given the current velocity of the vehicle. By default,
the function assumes that the vehicle is in forward motion.

The controller computes the steering angle command using the Stanley method [1],
whose control law is based on a kinematic bicycle model. Use this controller for path
following in low-speed environments, where inertial effects are minimal.

steerCmd = lateralControllerStanley(refPose,currPose,currVelocity,
Name,Value) specifies options using one or more name-value pairs. For example,
lateralControllerStanley(refPose,currPose,currVelocity,'Direction',-
1) computes the steering angle command for a vehicle in reverse motion.

Examples

Steering Angle Command for Vehicle in Forward Motion

Compute the steering angle command that adjusts the current pose of a vehicle to a
reference pose along a driving path. The vehicle is in forward motion.

 lateralControllerStanley

3-193

In this example, you compute a single steering angle command. In path-following
algorithms, compute the steering angle continuously as the pose and velocity of the
vehicle change.

Set a reference pose on the path. The pose is at position (4.8 m, 6.5 m) and has an
orientation angle of 2 degrees.

refPose = [4.8, 6.5, 2]; % [meters, meters, degrees]

Set the current pose of the vehicle. The pose is at position (2 m, 6.5 m) and has an
orientation angle of 0 degrees. Set the current velocity of the vehicle to 2 meters per
second.

currPose = [2, 6.5, 0]; % [meters, meters, degrees]
currVelocity = 2; % meters per second

Compute the steering angle command. For the vehicle to match the reference pose, the
steering wheel must turn 2 degrees counterclockwise.

steerCmd = lateralControllerStanley(refPose,currPose,currVelocity)

steerCmd = 2.0000

Steering Angle Command for Vehicle in Reverse Motion

Compute the steering angle command that adjusts the current pose of a vehicle to a
reference pose along a driving path. The vehicle is in reverse motion.

In this example, you compute a single steering angle command. In path-following
algorithms, compute the steering angle continuously as the pose and velocity of the
vehicle change.

Set a reference pose on the path. The pose is at position (5 m, 9 m) and has an orientation
angle of 90 degrees.

refPose = [5, 9, 90]; % [meters, meters, degrees]

Set the current pose of the vehicle. The pose is at position (5 m, 10 m) and has an
orientation angle of 75 degrees.

currPose = [5, 10, 75]; % [meters, meters, degrees]

3 Functions in Automated Driving System Toolbox

3-194

Set the current velocity of the vehicle to –2 meters per second. Because the vehicle is in
reverse motion, the velocity must be negative.

currVelocity = -2; % meters per second

Compute the steering angle command. For the vehicle to match the reference pose, the
steering wheel must turn 15 degrees clockwise.

steerCmd = lateralControllerStanley(refPose,currPose,currVelocity,'Direction',-1)

steerCmd = -15.0000

Input Arguments
refPose — Reference pose
[x, y, Θ] vector

Reference pose, specified as an [x, y, Θ] vector. x and y are in meters, and Θ is in degrees.

x and y specify the reference point to steer the vehicle toward. Θ specifies the orientation
angle of the path at this reference point and is positive in the counterclockwise direction.

• For a vehicle in forward motion, the reference point is the point on the path that is
closest to the center of the vehicle's front axle.

 lateralControllerStanley

3-195

• For a vehicle in reverse motion, the reference point is the point on the path that is
closest to the center of the vehicle's rear axle.

3 Functions in Automated Driving System Toolbox

3-196

Data Types: single | double

currPose — Current pose
[x, y, Θ] vector

Current pose of the vehicle, specified as an [x, y, Θ] vector. x and y are in meters, and Θ is
in degrees.

x and y specify the location of the vehicle, which is defined as the center of the vehicle's
rear axle.

Θ specifies the orientation angle of the vehicle at location (x,y) and is positive in the
counterclockwise direction.

 lateralControllerStanley

3-197

For more details on vehicle pose, see “Coordinate Systems in Automated Driving System
Toolbox”.
Data Types: single | double

currVelocity — Current longitudinal velocity
scalar

Current longitudinal velocity of the vehicle, specified as a scalar. Units are in meters per
second.

• If the vehicle is in forward motion, then this value must be greater than 0.
• If the vehicle is in reverse motion, then this value must be less than 0.
• A value of 0 represents a vehicle that is not in motion.

Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

3 Functions in Automated Driving System Toolbox

3-198

Example: 'MaxSteeringAngle',25

Direction — Driving direction of vehicle
1 (forward motion) (default) | -1 (reverse motion)

Driving direction of the vehicle, specified as the comma-separated pair consisting of
'Direction' and either 1 for forward motion or -1 for reverse motion. The driving
direction determines the position error and angle error used to compute the steering
angle command. For more details, see “Algorithms” on page 3-200.

PositionGain — Position gain
2.5 (default) | positive scalar

Position gain of the vehicle, specified as the comma-separated pair consisting of
'PositionGain' and a positive scalar. This value determines how much the position
error affects the steering angle. Typical values are in the range [1, 5]. Increase this value
to increase the magnitude of the steering angle.

Wheelbase — Distance between front and rear axles of vehicle
2.8 (default) | scalar

Distance between the front and rear axles of the vehicle, in meters, specified as the
comma-separated pair consisting of 'Wheelbase' and a scalar. This value applies only
when the vehicle is in forward motion.

MaxSteeringAngle — Maximum allowed steering angle
35 (default) | scalar in the range (0, 180)

Maximum allowed steering angle of the vehicle, in degrees, specified as the comma-
separated pair consisting of 'MaxSteeringAngle' and a scalar in the range (0, 180).

The steerCmd value is saturated to the range [-MaxSteeringAngle,
MaxSteeringAngle].

• Values below -MaxSteeringAngle are set to -MaxSteeringAngle.
• Values above MaxSteeringAngle are set to MaxSteeringAngle.

Output Arguments
steerCmd — Steering angle command
scalar

 lateralControllerStanley

3-199

Steering angle command, in degrees, returned as a scalar. This value is positive in the
counterclockwise direction.

For more details, see “Coordinate Systems in Automated Driving System Toolbox”.

Algorithms
To compute the steering angle command, the controller minimizes the position error and
the angle error of the current pose with respect to the reference pose. The driving
direction of the vehicle determines these error values.

When the vehicle is in forward motion ('Direction' name-value pair is 1):

• The position error is the lateral distance from the center of the front axle to the
reference point on the path.

• The angle error is the angle of the front wheel with respect to reference path.

When the vehicle is in reverse motion ('Direction' name-value pair is -1):

• The position error is the lateral distance from the center of the rear axle to the
reference point on the path.

3 Functions in Automated Driving System Toolbox

3-200

• The angle error is the angle of the rear wheel with respect to reference path.

For details on how the controller minimizes these errors, see [1].

References
[1] Hoffmann, Gabriel M., Claire J. Tomlin, Michael Montemerlo, and Sebastian Thrun.

"Autonomous Automobile Trajectory Tracking for Off-Road Driving: Controller
Design, Experimental Validation and Racing." American Control Conference.
2007, pp. 2296–2301. doi:10.1109/ACC.2007.4282788

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Blocks
Lateral Controller Stanley

Objects
pathPlannerRRT

Topics
“Automated Parking Valet”
“Coordinate Systems in Automated Driving System Toolbox”

Introduced in R2018b

 lateralControllerStanley

3-201

plotCoverageArea
Plot bird’s-eye view coverage area

Syntax
plotCoverageArea(caPlotter,position,range,orientation,fieldOfView)

Description
plotCoverageArea(caPlotter,position,range,orientation,fieldOfView)
returns a plot of a bird’s-eye view coverage area. Use coverageAreaPlotter to obtain
the caPlotter figure.

Examples

Create Coverage Area for Front-Facing Center-Mounted Radar Sensor

Create a bird's-eye plot.

bep = birdsEyePlot('XLim',[0 90],'YLim',[-35 35]);

3 Functions in Automated Driving System Toolbox

3-202

Create a coverage plotter for the bird's-eye plot.

caPlotter = coverageAreaPlotter(bep,'DisplayName','Radar coverage area');

 plotCoverageArea

3-203

Update the plot with a field of view of 35 degrees and a range of 60 meters.

mountPosition = [1 0];
range = 60;
orientation = 0;
fieldOfView = 35;

Plot the coverage area.

plotCoverageArea(caPlotter,mountPosition,range,orientation,fieldOfView);

3 Functions in Automated Driving System Toolbox

3-204

Plot Radar Coverage Areas at Four Corners of Vehicle

Create radar coverage areas at the four corners of a vehicle. The sensors have a
maximum range of 90 meters and a field of view of 30 degrees.

Create a bird's-eye plot.

bep = birdsEyePlot('XLim',[-100, 100],'YLim',[-100, 100]);

 plotCoverageArea

3-205

Set the positions, range, orientation, and field of view for the sensors. Plot the coverage
areas.

rearLeftPlotter = coverageAreaPlotter(bep,'DisplayName','Rear left','FaceColor','r');
rearRightPlotter = coverageAreaPlotter(bep,'DisplayName','Rear right','FaceColor','b');
frontLeftPlotter = coverageAreaPlotter(bep,'DisplayName','Front left','FaceColor','y');
frontRightPlotter = coverageAreaPlotter(bep,'DisplayName','Front right','FaceColor','g');

plotCoverageArea(rearLeftPlotter,[0 0.9],90,120,30);
plotCoverageArea(rearRightPlotter,[0 -0.9],90,-120,30);
plotCoverageArea(frontLeftPlotter,[2.8 0.9],90,60,30);
plotCoverageArea(frontRightPlotter,[2.8 -0.9],90,-60,30);

3 Functions in Automated Driving System Toolbox

3-206

Input Arguments
caPlotter — Bird’s-eye plot of coverage area
figure

Bird’s-eye plot of coverage area, specified as a figure plot.

position — Position of sensor on vehicle
[xorigin yorigin] row vector

 plotCoverageArea

3-207

Position of sensor on vehicle, specified as a [xorigin yorigin] row vector. xorigin
corresponds to the distance in front of the center of the vehicle. yorigin corresponds to
the distance to the left of the origin of the vehicle, which is the center of the rear axle.

Vehicle Coordinate System

range — Sensor coverage distance
scalar in meters

Sensor coverage distance, specified as a scalar in meters.

orientation — Heading angle of coverage area
degrees

Heading angle of coverage area, specified in degrees, from the X-axis. The orientation is
measured in a positive counterclockwise direction (to the left.)

fieldOfView — Sensor coverage angle
degrees

Sensor coverage angle, specified in degrees.

3 Functions in Automated Driving System Toolbox

3-208

See Also
Functions
birdsEyePlot | coverageAreaPlotter

Introduced in R2017a

 plotCoverageArea

3-209

plotDetection
Plot a set of object detections

Syntax
plotDetection(detPlotter,positions)
plotDetection(detPlotter,positions,velocities)
plotDetection(detPlotter,positions, ___ ,labels)

Description
plotDetection(detPlotter,positions) returns a plot of object detections. Use
detectionPlotter to obtain the detPlotter figure.

To remove all detections associated with this plotter, call clearData with a handle to the
detection plotter as its argument.

plotDetection(detPlotter,positions,velocities) additionally specifies the
detection velocities.

plotDetection(detPlotter,positions, ___ ,labels) additionally specifies labels
for the detections.

Examples

Create and Display a Bird's-Eye Plot

Create the bird's-eye plot.

bep = birdsEyePlot('XLim',[0,90],'YLim',[-35,35]);

3 Functions in Automated Driving System Toolbox

3-210

Display a coverage area with a field of view of 35 degrees and a range of 60 meters

caPlotter = coverageAreaPlotter(bep,'DisplayName','Radar Coverage Area');
mountPosition = [1 0];
range = 60;
orientation = 0;
fieldOfView = 35;
plotCoverageArea(caPlotter,mountPosition,range,orientation,fieldOfView);

 plotDetection

3-211

Display radar detections with coordinates at (30,-5),(50,-10), and (40,7).

radarPlotter = detectionPlotter(bep,'DisplayName','Radar Detections');
plotDetection(radarPlotter, [30 -5;50 -10;40 7]);

3 Functions in Automated Driving System Toolbox

3-212

Input Arguments
detPlotter — Detection plotter to use for bird’s-eye view display
figure

Detection plotter to use for bird’s-eye view display, specified as a figure.

positions — Positions of detected objects
M-by-2 matrix

 plotDetection

3-213

Positions of detected objects, specified as an M-by-2 matrix of (x, y) positions. The positive
x direction points ahead of the center of the vehicle. The positive y-direction points to the
left of the origin of the vehicle, which is the center of the rear-axle.

Vehicle Coordinate System

velocities — Velocity of detections
M-by-2 matrix

Velocity of detections, specified as anM-by-2 matrix.

labels — Detection labels
cell vector

Detection labels, specified as a cell vector of length M. The labels correspond to the
locations in the positions matrix. If you do not specify labels, they are omitted. You can
use the clearData function to remove all annotations and labels associated with the
detection plotter.

clearData(detPlotter)

See Also
Functions
birdsEyePlot | detectionPlotter

3 Functions in Automated Driving System Toolbox

3-214

Introduced in R2017a

 plotDetection

3-215

plotLaneBoundary
Plot lane boundary for bird’s-eye plot

Syntax
plotLaneBoundary(lbPlotter,boundaryCoordList)
plotLaneBoundary(lbPlotter,laneBoundary)

Description
plotLaneBoundary(lbPlotter,boundaryCoordList) displays lane boundaries from
a boundary coordinate list in a bird’s-eye plot. Use laneBoundaryPlotter to obtain the
lbPlotter figure.

To remove all lane boundaries associated with this plotter, call clearData with a handle
to the lane boundary plotter as its argument.

plotLaneBoundary(lbPlotter,laneBoundary) displays lane boundaries from an
object or vector of lane boundary objects.

Examples

Create and Plot Road Boundaries

Create a driving scenario containing a figure-8 road specified in scenario coordinates.
Convert the coordinates to an actor's ego coordinate system.

s = drivingScenario;

Add the figure-8 road to the scenario.

roadCenters = [0 0 1
 20 -20 1
 20 20 1

3 Functions in Automated Driving System Toolbox

3-216

 -20 -20 1
 -20 20 1
 0 0 1];

roadWidth = 3;
bankAngle = [0 15 15 -15 -15 0];
road(s,roadCenters,roadWidth,bankAngle);
plot(s)

Add the ego actor at coordinates (20,-20), oriented at 30 degrees yaw angle with respect
to scenario coordinates.

ego = actor(s,'Position',[20 -20 0],'Yaw',-15);

 plotLaneBoundary

3-217

Obtain the road boundaries in scenario coordinates using the roadBoundaries method
with the scenario specified as the input argument.

rbScenario = roadBoundaries(s);

Obtain the road boundaries in ego actor coordinates using the roadBoundaries method
with the ego actor specified as the input argument.

rbEgo1 = roadBoundaries(ego);

Display the result on a bird's-eye plot.

bep = birdsEyePlot;
lbp = laneBoundaryPlotter(bep,'DisplayName','road');
plotLaneBoundary(lbp,rbEgo1)

3 Functions in Automated Driving System Toolbox

3-218

Obtain the road boundaries in ego actor coordinates using the roadBoundariesToEgo
method.

rbEgo2 = driving.scenario.roadBoundariesToEgo(rbScenario,ego);

Display the result on a bird's-eye plot.

bep = birdsEyePlot;
lbp = laneBoundaryPlotter(bep,'DisplayName','road');
plotLaneBoundary(lbp, {rbEgo2})

 plotLaneBoundary

3-219

Input Arguments
lbPlotter — Lane boundary plotter
figure

Lane boundary plotter, specified as a figure.

boundaryCoordList — Coordinates for a boundary lane
cell array of M-by-2 matrices

Coordinates for a boundary lane, specified as a cell array of M-by-2 matrices. The first
and second column of each matrix represents the (x, y) positions of a curve. The positive x

3 Functions in Automated Driving System Toolbox

3-220

direction points ahead of the center of the vehicle. The positive y-direction points to the
left of the origin of the vehicle, which is the center of the rear-axle.

Vehicle Coordinate System

laneBoundary — Land boundary data
cell array of vectors | landBoundary objects

Land boundary data, specified as a cell array of vectors or as a vector of landBoundary
objects. Each element of the cell array contains a vector. Each vector contains an N-by-2
matrix of (x,y) coordinates in two columns. You can provide an N-by-3 matrix, but
birdsEyePlot ignores the third column, which represents height.

See Also
Functions
birdsEyePlot | laneBoundaryPlotter

Introduced in R2017a

 plotLaneBoundary

3-221

plotLaneMarking
Plot lane markings on bird’s-eye plot

Syntax
plotLaneMarking(lmPlotter,lmv,lmf)

Description
plotLaneMarking(lmPlotter,lmv,lmf) plots lane markings on a bird's-eye plot
using the plotter, lmPlotter, the lane marking vertices, lmv, and the lane marking
faces, lmf. Use laneMarkingPlotter to obtain the lmPlotter object. You can use
laneMarkingVertices to generate lane marking vertices and faces.

To remove all lane marking vertices and faces associated with this plotter, call
clearData with lmPlotter as its argument.

Examples

Plot Lane Markings in Car and Pedestrian Scenario

Construct a driving scenario containing a car and pedestrian on a straight road. Then,
create and display lane markings in a bird's-eye plot.

Create an empty driving scenario.

sc = drivingScenario;

Construct a straight road segment 25 m in length with two travel lanes in one direction.

lm = [laneMarking('Solid')
 laneMarking('Dashed','Length',2,'Space',4)
 laneMarking('Solid')];
l = lanespec(2,'Marking',lm);
road(sc, [0 0 0; 25 0 0],'Lanes',l);

3 Functions in Automated Driving System Toolbox

3-222

Add a pedestrian crossing the road at 1 m/s and a car following the road at 10 m/s.

ped = actor(sc, 'Length', 0.2, 'Width', 0.4, 'Height', 1.7);
car = vehicle(sc);
trajectory(ped,[15 -3 0; 15 3 0], 1);
trajectory(car,[car.RearOverhang 0 0; 25-car.Length+car.RearOverhang 0 0], 10);

Display the scenario and corresponding chase plot.

plot(sc)

chasePlot(car)

 plotLaneMarking

3-223

Run the simulation.

• Create the bird's eye plot and add an outline plotter, a lane boundary plotter and lane
marking plotter.

• Get the road boundaries and target outlines.
• Get lane marking vertices and faces.
• Plot the boundaries and lane markers.
• Run the simulation loop.

bep = birdsEyePlot('XLim',[-25 25],'YLim',[-10 10]);
olPlotter = outlinePlotter(bep);
lbPlotter = laneBoundaryPlotter(bep);

3 Functions in Automated Driving System Toolbox

3-224

lmPlotter = laneMarkingPlotter(bep,'DisplayName','Lanes');
legend('off');
while advance(sc)
 rb = roadBoundaries(car);
 [position, yaw, length, width, originOffset, color] = targetOutlines(car);
 [lmv, lmf] = laneMarkingVertices(car);
 plotLaneBoundary(lbPlotter, rb);
 plotLaneMarking(lmPlotter, lmv, lmf);
 plotOutline(olPlotter, position, yaw, length, width, ...
 'OriginOffset', originOffset, 'Color', color);
end

 plotLaneMarking

3-225

3 Functions in Automated Driving System Toolbox

3-226

Input Arguments
lmPlotter — Lane marking plotter
laneMarkingPlotter object

Lane marking plotter, specified as a laneMarkingPlotter object.

lmv — Lane marking vertices
real-valued L-by-3 matrix

 plotLaneMarking

3-227

Lane marking vertices, specified as a real-valued L-by-3 matrix. Each row of the lane
marking matrix represents the x, y, and z coordinates of a vertex. The plotter only uses
the x and y coordinates.

lmf — Lane marking faces
real-valued matrix

Lane marking faces, specified as a real-valued matrix. Each row of the matrix is a face
that defines the connection between vertices for one lane marking.

See Also
Functions
birdsEyePlot | laneMarkingPlotter | laneMarkingVertices

Introduced in R2018a

3 Functions in Automated Driving System Toolbox

3-228

plotOutline
Plot object outlines

Syntax
plotOutline(olPlotter,positions,yaw,length,width)
plotOutline(___ ,Name,Value)

Description
plotOutline(olPlotter,positions,yaw,length,width) plots rectangular
outlines of the objects stored in a bird's-eye-view plotter. Specify the position of each
rectangle, the angle of rotation (yaw), and the length and width of each rectangle. To
obtain the olPlotter input, use outlinePlotter.

To remove all outlines associated with this plotter, call clearData with a handle to the
outline plotter as its argument.

From a given driving scenario, use targetOutlines to get the dimensions for all actors
in the scene. Then, after calling outlinePlotter to create a plotter object, use
plotOutline to plot the outlines of all the actors in a bird's-eye plot.

plotOutline(___ ,Name,Value) specifies additional options using one or more
Name,Value pair arguments.

Examples

Plot Outlines of Targets in Bird's-Eye Plot

Create a driving scenario. Construct a 25 m road segment, add a pedestrian and a
vehicle, and specify their trajectories to follow. The pedestrian crosses the road at 1 m/s.
The vehicle drives along the road at 10 m/s.

s = drivingScenario;

 plotOutline

3-229

road(s, [0 0 0; 25 0 0]);

p = actor(s,'Length',0.2,'Width',0.4,'Height',1.7);
v = vehicle(s);

trajectory(p,[15 -3 0; 15 3 0], 1);
trajectory(v,[v.RearOverhang 0 0; 25-v.Length+v.RearOverhang 0 0], 10);

Add an egocentric plot for the vehicle

chasePlot(v,'Centerline','on')

Create a bird's-eye plot.

3 Functions in Automated Driving System Toolbox

3-230

bep = birdsEyePlot('XLim',[-25 25],'YLim',[-10 10]);
olPlotter = outlinePlotter(bep);
lbPlotter = laneBoundaryPlotter(bep);
legend('off')

Start the simulation loop. Update the plotter with outlines for the targets.

while advance(s)
 % get the road boundaries and rectangular outlines
 rb = roadBoundaries(v);
 [position,yaw,length,width,originOffset,color] = targetOutlines(v);

 % update the bird's-eye plotters with the road and actors
 plotLaneBoundary(lbPlotter,rb);

 plotOutline

3-231

 plotOutline(olPlotter,position,yaw,length,width, ...
 'OriginOffset',originOffset,'Color',color);

 % allow time for plot to update
 pause(0.01)
end

3 Functions in Automated Driving System Toolbox

3-232

Input Arguments
olPlotter — Outline plotter
plotter object

Outline plotter to use for the bird’s-eye plot, returned as a plotter object. To create the
object, use outlinePlotter.

positions — Positions of detected objects
M-by-2 matrix

 plotOutline

3-233

Positions of detected objects, specified as an M-by-2 matrix of (x, y) positions, where M is
the number of objects. The positive x-direction points ahead of the center of the vehicle.
The positive y-direction points to the left of the origin of the vehicle, which is the center
of the rear axle.

Vehicle Coordinate System

yaw — Angles of rotation
M-element vector

Angles of rotation for each outline, specified as an M-element vector, where M is the
number of objects.

length — Lengths of outlines
M-element vector

Length of outlines, specified as an M-element vector, where M is the number of objects.

width — Widths of outlines
M-element vector

Widths of outlines, specified as an M-element vector, where M is the number of objects.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

3 Functions in Automated Driving System Toolbox

3-234

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Marker','x'

OriginOffset — Rotational centers of rectangles relative to origin
M-by-2 vector

Rotational center of rectangles relative to origin, specified as the comma-separated pair
consisting of 'OriginOffset' and an M-by-2 vector, where M is the number of objects.
Each row corresponds to the rotational center about which to rotate a rectangle, specified
as an xy-displacement from the geometrical center of the rectangle.

Color — Outline color
RGB triplet

Outline color, specified as the comma-separated pair consisting of 'Color' and an RGB
triplet. If this argument is not specified, the function uses the default colormap.

Example: 'Color',[0 0.5 1]

See Also
Functions
birdsEyePlot | outlinePlotter

Introduced in R2017b

 plotOutline

3-235

plotPath
Plot lane boundary for bird’s-eye plot

Syntax
plotPath(pPlotter,pathCoordList)

Description
plotPath(pPlotter,pathCoordList) returns lane boundaries to display from a
boundary coordinate list in a bird’s-eye plot. Use pathPlotter to obtain the lbPlotter
figure.

To remove all paths associated with this plotter, call clearData with a handle to the path
plotter as its argument.

Examples

Plot Path of Ego Vehicle

Create a 3-meter-wide lane.

lb = parabolicLaneBoundary([-0.001,0.01,1.5]);
rb = parabolicLaneBoundary([-0.001,0.01,-1.5]);

Compute the model manually up to 30 meters ahead in the lane.

xWorld = (0:30)';
yLeft = computeBoundaryModel(lb,xWorld);
yRight = computeBoundaryModel(rb,xWorld);

Create a bird's-eye plot and plot the lane information.

3 Functions in Automated Driving System Toolbox

3-236

bep = birdsEyePlot('XLimits',[0 30],'YLimits',[-5 5]);
lanePlotter = laneBoundaryPlotter(bep,'DisplayName','Lane boundaries');
plotLaneBoundary(lanePlotter,{[xWorld,yLeft],[xWorld,yRight]});

Plot the path of an ego vehicle that travels through the center of the lane.

yCenter = (yLeft + yRight)/2;
egoPathPlotter = pathPlotter(bep,'DisplayName','Ego path');
plotPath(egoPathPlotter,{[xWorld,yCenter]});

 plotPath

3-237

Input Arguments
pPlotter — Path plotter
figure

Lane boundary plotter, specified as a figure.

pathCoordList — Coordinates for paths
cell array of M-by-2 matrices

Coordinates for paths, specified as a cell array of M-by-2 matrices. The first and second
column of each matrix represents the (x, y) positions of a curve that represent the path.

3 Functions in Automated Driving System Toolbox

3-238

The positive x direction points ahead of the center of the vehicle. The positive y-direction
points to the left of the origin of the vehicle, which is the center of the rear axle.

Vehicle Coordinate System

See Also
Functions
birdsEyePlot | pathPlotter

Introduced in R2017a

 plotPath

3-239

plotTrack
Plot a set of detection tracks

Syntax
plotTrack(tPlotter,positions)
plotTrack(tPlotter,positions,velocities)
plotTrack(tPlotter,positions, ___ ,labels)
plotTrack(tPlotter,positions, ___ ,labels,covariances)

Description
plotTrack(tPlotter,positions) returns a plot of object detection tracks. Use
trackPlotter to obtain the tPlotter figure.

To remove all tracks associated with this plotter, call clearData with a handle to the
track plotter as its argument.

plotTrack(tPlotter,positions,velocities) additionally specifies the detection
velocities.

plotTrack(tPlotter,positions, ___ ,labels) additionally specifies labels for the
detections.

plotTrack(tPlotter,positions, ___ ,labels,covariances) additionally
specifies covariances of track uncertainties.

Examples

Create Bird's-Eye Plot with Labeled Tracks

Create a bird's-eye plot and a track plotter. Set the plotter to display up to seven history
values for each track.

3 Functions in Automated Driving System Toolbox

3-240

bep = birdsEyePlot('XLim',[0 90],'YLim',[-35 35]);
tPlotter = trackPlotter(bep,'DisplayName','Tracks','HistoryDepth',7);

Set the positions, velocities, and labels of each track.

positions = [30, 5; 30, 5; 30, 5];
velocities = [3, 0; 3, 2; 3, -3];
labels = {'T1','T2','T3'};

Update the tracks for 10 trials, showing the seven history values specified previously.

for i=1:10
 plotTrack(tPlotter,positions,velocities,labels);
 positions = positions + velocities;
end

 plotTrack

3-241

Input Arguments
tPlotter — Detection plotter to use for bird’s-eye view display
figure

Detection plotter to use for bird’s-eye view display, specified as a figure.

positions — Positions of detected objects
M-by-2 matrix

3 Functions in Automated Driving System Toolbox

3-242

Positions of detected objects, specified as an M-by-2 matrix of (x, y) positions. The positive
x direction points ahead of the center of the vehicle. The positive y-direction points to the
left of the origin of the vehicle, which is the center of the rear axle.

Vehicle Coordinate System

velocities — Velocity of detections
M-by-2 matrix

Velocity of detections, specified as anM-by-2 matrix.

labels — Detection labels
cell vector

Detection labels, specified as a cell vector of length M. The labels correspond to the
locations in the positions matrix. If you do not specify labels, they are omitted. You can
use the clearData function to remove all annotations and labels associated with the
detection plotter.

clearData(tPlotter)

covariances — Covariances of track uncertainties
2-by-2-by-M matrix

Covariances of track uncertainties centered at the track positions, specified as a 2-by-2-
by-M matrix. The uncertainties are plotted as an ellipse.

 plotTrack

3-243

See Also
Functions
birdsEyePlot | trackPlotter

Introduced in R2017a

3 Functions in Automated Driving System Toolbox

3-244

driving.scenario.roadBoundariesToEgo
Convert road boundaries to ego coordinates

Syntax
egoRoadboundaries = driving.scenario.roadBoundariesToEgo(
scenarioRoadboundaries,egoActor)

Description
egoRoadboundaries = driving.scenario.roadBoundariesToEgo(
scenarioRoadboundaries,egoActor) converts road boundaries,
scenarioRoadboundaries, in scenario coordinates to road boundaries,
egoRoadboundaries, in the coordinate system of the ego actor, egoActor.

Examples

Create and Plot Road Boundaries

Create a driving scenario containing a figure-8 road specified in scenario coordinates.
Convert the coordinates to an actor's ego coordinate system.

s = drivingScenario;

Add the figure-8 road to the scenario.

roadCenters = [0 0 1
 20 -20 1
 20 20 1
 -20 -20 1
 -20 20 1
 0 0 1];

roadWidth = 3;

 driving.scenario.roadBoundariesToEgo

3-245

bankAngle = [0 15 15 -15 -15 0];
road(s,roadCenters,roadWidth,bankAngle);
plot(s)

Add the ego actor at coordinates (20,-20), oriented at 30 degrees yaw angle with respect
to scenario coordinates.

ego = actor(s,'Position',[20 -20 0],'Yaw',-15);

3 Functions in Automated Driving System Toolbox

3-246

Obtain the road boundaries in scenario coordinates using the roadBoundaries method
with the scenario specified as the input argument.

rbScenario = roadBoundaries(s);

Obtain the road boundaries in ego actor coordinates using the roadBoundaries method
with the ego actor specified as the input argument.

rbEgo1 = roadBoundaries(ego);

Display the result on a bird's-eye plot.

bep = birdsEyePlot;
lbp = laneBoundaryPlotter(bep,'DisplayName','road');
plotLaneBoundary(lbp,rbEgo1)

 driving.scenario.roadBoundariesToEgo

3-247

Obtain the road boundaries in ego actor coordinates using the roadBoundariesToEgo
method.

rbEgo2 = driving.scenario.roadBoundariesToEgo(rbScenario,ego);

Display the result on a bird's-eye plot.

bep = birdsEyePlot;
lbp = laneBoundaryPlotter(bep,'DisplayName','road');
plotLaneBoundary(lbp, {rbEgo2})

3 Functions in Automated Driving System Toolbox

3-248

Input Arguments
scenarioRoadboundaries — Road boundaries in scenario coordinates
1-by-N cell array

Road boundaries in scenario coordinates, specified as a 1-by-N cell array. N is the number
of road boundaries within the scenario. Each cell corresponds to a road and contains the
x,y,z coordinates of the road boundaries in a real-valued P-by-3 real-valued matrix. P can
vary from cell to cell. Units are in meters.
Data Types: double

 driving.scenario.roadBoundariesToEgo

3-249

egoActor — ego actor pose
structure

Ego actor pose, specified as a structure. Pose is defined with respect to scenario
coordinates. The structure fields:

Field Description
ActorID Scenario-defined actor identifier
Position Position of actor, specified as a real-valued

1-by-3 vector. Units are in meters.
Velocity Velocity of actor, specified as a real-valued

1-by-3 vector. Units are in meters per
second.

Roll Roll angle of actor, specified as a scalar.
Units are in degrees.

Pitch Pitch angle of actor, specified as a scalar.
Units are in degrees.

Yaw Yaw angle of actor, specified as a scalar.
Units are in degrees.

AngularVelocity Angular velocity of actor, specified as a
real-valued 1-by-3 vector. Units are in
degrees per second.

Output Arguments
egoRoadboundaries — Road boundaries in ego actor coordinates
real-valued Q-by-3 matrix

Road boundaries in ego actor coordinates, returned as a real-valued Q-by-3 matrix. Q is
the number of road boundary point coordinates, x,y,z. All road boundaries are contained
in the same matrix with a row of NaN values separating points in different road
boundaries. For example, if the input had 3 road boundaries of length P1, P2, and P3, then
Q = P1 + P2 + P3 + 2. Units are in meters.
Data Types: double

3 Functions in Automated Driving System Toolbox

3-250

See Also
drivingScenario.actor | drivingScenario.actorPoses |
drivingScenario.vehicle | targetPoses

Introduced in R2017a

 driving.scenario.roadBoundariesToEgo

3-251

segmentLaneMarkerRidge
Detect lanes in a grayscale intensity image

Syntax
birdsEyeBW = segmentLaneMarkerRidge(birdsEyeImage,birdsEyeConfig,
approxMarkerWidth)
birdsEyeBW = segmentLaneMarkerRidge(___ ,Name,Value)

Description
birdsEyeBW = segmentLaneMarkerRidge(birdsEyeImage,birdsEyeConfig,
approxMarkerWidth) returns a binary image that represents lane features. The
function segments the input grayscale intensity image, birdsEyeImage, using a lane
ridge detector. birdsEyeConfig transforms point locations from vehicle coordinates to
image coordinates. The approxMarkerWidth argument is in world units, and specifies
the approximate width of the lane-like features that are detected.

birdsEyeBW = segmentLaneMarkerRidge(___ ,Name,Value) returns a binary
image with additional options specified by one or more Name,Value pair arguments.

Examples

Detect Lanes in Road Image

Load a bird's-eye-view configuration object.

load birdsEyeConfig

Load the image captured from the sensor that is defined in the bird's-eye-view
configuration object.

I = imread('road.png');
figure

3 Functions in Automated Driving System Toolbox

3-252

imshow(I)
title('Original Image')

Create a bird's-eye-view image.

birdsEyeImage = transformImage(birdsEyeConfig,I);
imshow(birdsEyeImage)

 segmentLaneMarkerRidge

3-253

3 Functions in Automated Driving System Toolbox

3-254

Convert bird's-eye-view image to grayscale.

birdsEyeImage = rgb2gray(birdsEyeImage);

Set the approximate lane marker width to 25 cm, which is in world units.

approxMarkerWidth = 0.25;

Detect lane features.

birdsEyeBW = segmentLaneMarkerRidge(birdsEyeImage,birdsEyeConfig,approxMarkerWidth);
imshow(birdsEyeBW)

 segmentLaneMarkerRidge

3-255

Input Arguments
birdsEyeImage — Bird’s-eye-view image
matrix

3 Functions in Automated Driving System Toolbox

3-256

Bird’s-eye-view image, specified as a nonsparse matrix.
Data Types: single | int16 | uint16 | uint8

birdsEyeConfig — Object to transform point locations
birdsEyeView object

Object to transform point locations from vehicle to image coordinates, specified as a
birdsEyeView object.

approxMarkerWidth — Approximate width of lane-like features
real scalar in world units

Approximate width of lane-like features for the function to detect in the bird’s-eye-view
image, specified as a real scalar in world units, such as meters.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'ROI' []

ROI — Region of interest
[] (default) | world units

Region of interest in world units, specified as the comma-separated pair consisting of
'ROI' and a 1-by-4 vector in the format [xmin,xmax,ymin,ymax]. The function searches
for lane-like features only within this region of interest. If you do not specify ROI, the
function searches the entire image.

Sensitivity — Sensitivity factor
0.25 (default) | nonnegative scalar in the range [0,1]

Sensitivity factor, specified as the comma-separated pair consisting of 'Sensitivity'
and a nonnegative scalar in the range [0,1]. You can increase this value to detect more
lane-like features. However, the higher sensitivity can increase the risk of false
detections.

 segmentLaneMarkerRidge

3-257

Output Arguments
birdsEyeBW — Bird’s-eye-view image
binary image

Bird’s-eye-view image, returned as a binary image that represents lane features.

Definitions

Vehicle Coordinate System
This function uses a vehicle coordinate system to define point locations, as defined by the
sensor in the birdsEyeView object. It uses the same world units as defined by the
birdsEyeConfig.Sensor.WorldUnits property. See “Coordinate Systems in
Automated Driving System Toolbox”.

Algorithms
segmentLaneMarkerRidge selects lanes by searching for pixels that are lane-like. Lane-
like pixels are groups of pixels with high-intensity contrast compared to neighboring
pixels on either side. The function chooses the filter used to threshold the intensity
contrast based on the approxMarkerWidth value. The filter has high responses for
pixels with intensity values higher than those of the left and right neighboring pixels that
have a similar intensity at a distance of approxMarkerWidth. The function retains only
certain values from the filtered image based on the Sensitivity factor.

References
[1] Nieto, M., J. A. Laborda, and L. Salgado. “Road Environment Modeling Using Robust

Perspective Analysis and Recursive Bayesian Segmentation.” Machine Vision and
Applications. Volume 22, Issue 6, 2011, pp. 927–945.

See Also
birdsEyeView

3 Functions in Automated Driving System Toolbox

3-258

Introduced in R2017a

 segmentLaneMarkerRidge

3-259

driving.scenario.TargetsToEgo
Convert actor poses to ego coordinate system

Syntax
targetPoses = driving.scenario.TargetsToEgo(actorPoses,egoActor)

Description
targetPoses = driving.scenario.TargetsToEgo(actorPoses,egoActor)
transforms target actor poses, actorPoses, from scenario coordinates to the ego-centric
coordinate system of the actor, egoActor, and returns the transformed poses in
targetPoses (see “Ego and target actors” on page 3-264).

Examples

Obtain Target Poses in Ego Coordinates

Create a driving scenario containing three vehicles. Find the target poses of two of the
vehicles as viewed by the third vehicle. Target poses are returned in the egocentric
coordinate system of the third vehicle.

First, create a driving scenario.

s = drivingScenario;

Then, create the target actors.

actor(s,'Position',[10 20 30], ...
 'Velocity',[12 113 14], ...
 'Yaw', 54, ...
 'Pitch', 25, ...
 'Roll', 22, ...
 'AngularVelocity',[24 42 27]);

3 Functions in Automated Driving System Toolbox

3-260

actor(s,'Position', [17 22 12], ...
 'Velocity', [19 13 15], ...
 'Yaw', 45, ...
 'Pitch', 52, ...
 'Roll', 2, ...
 'AngularVelocity',[42 24 29]);

Add the ego actor.

ego = actor(s,'Position', [1 2 3], ...
 'Velocity', [1.2 1.3 1.4], ...
 'Yaw', 4, ...
 'Pitch', 5, ...
 'Roll', 2, ...
 'AngularVelocity', [4 2 7]);

Use actorPoses to return the poses of all the actors. Pose quantities (position, velocity,
and orientation) are defined with respect to scenario coordinates.

allposes = actorPoses(s);

Use targetsToEgo to convert just the target poses to the egocentric coordinates of the
ego actor. Examine the pose of the first actor.

targetposes1 = driving.scenario.targetsToEgo(allposes(1:2),ego);
disp(targetposes1(1))

 ActorID: 1
 Position: [7.8415 18.2876 27.1675]
 Velocity: [18.6826 112.0403 9.2960]
 Roll: 16.4327
 Pitch: 23.2186
 Yaw: 47.8114
 AngularVelocity: [20 40 20]

Alternatively, use targetPoses to obtain all non-ego actor poses in ego actor
coordinates. Compare this result to the previous calculation of poses.

targetposes2 = targetPoses(ego);
disp(targetposes2(1))

 ActorID: 1
 ClassID: 0
 Position: [7.8415 18.2876 27.1675]

 driving.scenario.TargetsToEgo

3-261

 Velocity: [18.6826 112.0403 9.2960]
 Roll: 16.4327
 Pitch: 23.2186
 Yaw: 47.8114
 AngularVelocity: [20 40 20]

Input Arguments
actorPoses — Actor poses in scenario coordinates
structure | array of structures

Actor poses in scenario coordinates, specified as a structure or array of structures. Each
pose structure has the fields:

Field Description
ActorID Scenario-defined actor identifier
Position Position of actor, specified as a real-valued

1-by-3 vector. Units are in meters.
Velocity Velocity of actor, specified as a real-valued

1-by-3 vector. Units are in meters per
second.

Roll Roll angle of actor, specified as a scalar.
Units are in degrees.

Pitch Pitch angle of actor, specified as a scalar.
Units are in degrees.

Yaw Yaw angle of actor, specified as a scalar.
Units are in degrees.

AngularVelocity Angular velocity of actor, specified as a
real-valued 1-by-3 vector. Units are in
degrees per second.

See Actor and Vehicle for full definitions of the structure fields.

egoActor — Ego actor pose in scenario coordinates
structure

Ego actor pose in scenario coordinates, specified as a structure. The structure fields are:

3 Functions in Automated Driving System Toolbox

3-262

Field Description
ActorID Scenario-defined actor identifier
Position Position of actor, specified as a real-valued

1-by-3 vector. Units are in meters.
Velocity Velocity of actor, specified as a real-valued

1-by-3 vector. Units are in meters per
second.

Roll Roll angle of actor, specified as a scalar.
Units are in degrees.

Pitch Pitch angle of actor, specified as a scalar.
Units are in degrees.

Yaw Yaw angle of actor, specified as a scalar.
Units are in degrees.

AngularVelocity Angular velocity of actor, specified as a
real-valued 1-by-3 vector. Units are in
degrees per second.

See Actor and Vehicle for full definitions of the structure fields.

Output Arguments
targetPoses — Target poses in ego coordinates
structure | array of structures

Target poses in ego coordinates, specified as a structure or array of structures. Each
structure has the fields:

Field Description
ActorID Scenario-defined actor identifier
Position Position of actor, specified as a real-valued

1-by-3 vector. Units are in meters.
Velocity Velocity of actor, specified as a real-valued

1-by-3 vector. Units are in meters per
second.

 driving.scenario.TargetsToEgo

3-263

Field Description
Roll Roll angle of actor, specified as a scalar.

Units are in degrees.
Pitch Pitch angle of actor, specified as a scalar.

Units are in degrees.
Yaw Yaw angle of actor, specified as a scalar.

Units are in degrees.
AngularVelocity Angular velocity of actor, specified as a

real-valued 1-by-3 vector. Units are in
degrees per second.

See Actor and Vehicle for full definitions of the structure fields.

Definitions

Ego and target actors
In a driving scenario, you can specify one actor as the observer of all other actors, much
as the driver of a car observes all other cars. The observer actor is called the ego actor.
From the perspective of the ego actor, all other actors are the observed actors and are
called target actors or targets. Ego coordinates are coordinates centered and oriented
with reference to the ego actor. Driving scenario coordinates are world or global
coordinates.

See Also
driving.scenario.roadBoundariesToEgo | drivingScenario.actor |
drivingScenario.actorPoses | drivingScenario.vehicle | roadBoundaries |
targetPoses

Introduced in R2017a

3 Functions in Automated Driving System Toolbox

3-264

vehicleDetectorACF
Load vehicle detector using aggregate channel features

Syntax
detector = vehicleDetectorACF
detector = vehicleDetectorACF(modelName)

Description
detector = vehicleDetectorACF returns a pretrained vehicle detector using
aggregate channel features (ACF). The returned acfObjectDetector object is trained
using unoccluded images of the front, rear, left, and right sides of the vehicles.

detector = vehicleDetectorACF(modelName) returns a pretrained vehicle detector
based on the model specified in modelName. A 'full-view' model uses training images
that are unoccluded views from the front, rear, left, and right sides of vehicles. A
'front-rear-view' model uses images only from the front and rear sides of the
vehicle.

Examples

Detect Vehicles in Image

Load the pre-trained detector for vehicles

detector = vehicleDetectorACF('front-rear-view');

Load an image and run the detector.

I = imread('highway.png');
[bboxes,scores] = detect(detector,I);

Overlay bounding boxes and scores for vehicles detected in the image.

 vehicleDetectorACF

3-265

I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)
title('Detected Vehicles and Detection Scores')

Input Arguments
modelName — Type of vehicle detector model
'full-view' (default) | 'front-rear-view'

Type of vehicle detector model, specified as either 'front-rear-view' or 'full-
view'. A 'full-view' model uses training images that are unoccluded views from the
front, rear, left, and right sides of vehicles. A 'front-rear-view' model uses images
only from the front and rear sides of the vehicle.
Data Types: char | string

3 Functions in Automated Driving System Toolbox

3-266

Output Arguments
detector — Trained ACF-based object detector
acfObjectDetector object

Trained ACF-based object detector, returned as an acfObjectDetector object.

See Also
acfObjectDetector | trainACFObjectDetector

Introduced in R2017a

 vehicleDetectorACF

3-267

vehicleDetectorFasterRCNN
Detect vehicles using Faster R-CNN

Syntax
detector = vehicleDetectorFasterRCNN
detector = vehicleDetectorFasterRCNN(modelName)

Description
detector = vehicleDetectorFasterRCNN returns a trained Faster R-CNN (regions
with convolution neural networks) object detector for detecting vehicles. Faster R-CNN is
a deep learning object detection framework that uses a convolutional neural network
(CNN) for detection.

The function trains the detector using unoccluded images of the front, rear, left, and right
sides of vehicles. The CNN used with the vehicle detector uses a modified version of the
CIFAR-10 network architecture.

Use of this function requires Deep Learning Toolbox™.

Note The detector is trained using uint8 images. Before using this detector, rescale the
input images to the range [0, 255] by using im2uint8 or rescale.

detector = vehicleDetectorFasterRCNN(modelName) returns a pretrained
vehicle detector based on the model name specified in modelName. The default 'full-
view' model uses training images that are unoccluded views from the front, rear, left,
and right sides of vehicles. A 'front-rear-view' model uses images of only the front
and rear sides of the vehicles.

Examples

3 Functions in Automated Driving System Toolbox

3-268

Detect Vehicles on Highway

Detect cars in a single image and annotate the image with the detection scores. To detect
cars, use a Faster R-CNN object detector that was trained using images of vehicles.

Load the pretrained detector.

fasterRCNN = vehicleDetectorFasterRCNN('full-view');

Use the detector on a loaded image. Store the locations of the bounding boxes and their
detection scores.

I = imread('highway.png');
[bboxes,scores] = detect(fasterRCNN,I);

Annotate the image with the detections and their scores.

I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)
title('Detected Vehicles and Detection Scores')

 vehicleDetectorFasterRCNN

3-269

Input Arguments
modelName — Type of vehicle detector model
'full-view' (default) | 'front-rear-view'

Type of vehicle detector model, specified as either 'full-view' or 'front-rear-
view'. A 'full-view' model uses training images that are unoccluded views from the
front, rear, left, and right sides of vehicles. A 'front-rear-view' model uses images of
only the front and rear sides of the vehicles.
Data Types: char | string

Output Arguments
detector — Trained Faster R-CNN-based object detector
fasterRCNNObjectDetector object

Trained Faster R-CNN-based object detector, returned as an
fasterRCNNObjectDetector object.

See Also
fasterRCNNObjectDetector | trainFasterRCNNObjectDetector |
vehicleDetectorACF

Introduced in R2017a

3 Functions in Automated Driving System Toolbox

3-270

Objects in Automated Driving
System Toolbox

4

driving.connector.Connector class

Interface to connect external tool to Ground Truth Labeler app

Description
The driving.connector.Connector class creates an interface between a custom
visualization or analysis tool and the Ground Truth Labeler app.

Construction
The Connector class that inherits from the Connector interface, is called a client.

The client can:

• Sync an external tool to each frame change event within the Ground Truth Labeler.
Syncing allows you to control the external tool through the range slider and playback
controls of the app.

• Control the current time in the external tool and the corresponding display for it in the
app.

• Export custom labeled data from an external tool via the app.

1 Define a client class that inherits from driving.connector.Connector. You can
use a ConnectorClass template to define the class and implement your custom
visualization or analysis tool. At the MATLAB command prompt, enter:

driving.connector.Connector.openTemplateInEditor

Follow the steps found in the template.
2 Save the file to any folder on the MATLAB path. Alternatively, add the folder into

which you saved the file to the MATLAB path. To add a folder to the path, use the
addpath function.

4 Objects in Automated Driving System Toolbox

4-2

Properties
VideoStartTime — Start time of source video file
scalar in seconds

This property is read-only.

Start time of source video file, specified as a scalar in seconds.

VideoEndTime — End time of source video file
scalar in seconds

This property is read-only.

End time of source video file, specified as a scalar in seconds.

StartTime — Start time of video interval in app
scalar in seconds

This property is read-only.

Start time of video interval in app, specified as a scalar in seconds. To set the start time,
use the start flag interval in the app.

CurrentTime — Time of video frame currently displaying in app
scalar in seconds

This property is read-only.

Time of video frame currently displaying in app, specified as a scalar in seconds.

EndTime — End time of video in app
scalar in seconds

This property is read-only.

End time of video in app, specified as a scalar in seconds. To set the end time, use the end
flag interval in the app.

TimeVector — Time stamps for the loaded video
array

This property is read-only.

 driving.connector.Connector class

4-3

Timestamps for the loaded video, specified in an array.

LabelData — Label data imported from external tool
two-column table

This property is read-only.

Label data imported from external tool, specified as a two-column table. The first column
contains timestamps and the second column contains the label information that you
specify for the corresponding timestamp.

LabelName — Names of labels
character vector | string scalar | cell array of character vectors | string array

Names of labels, specified as a character vector, a string scalar, a cell array of character
vectors, or a string array. These names must be valid MATLAB variables that correspond
to the label names specified in the second column of LabelData.

LabelDescription — Descriptions of labels
character vector | string scalar | cell array of character vectors | string array

Descriptions of labels, specified as a character vector, a string scalar, a cell array of
character vectors, or a string array. Each description of LabelDescription corresponds
to a label specified in LabelName.

Methods
The client class must implement the following methods:

frameChangeListener Update external tool when a new frame is detected

The client class can optionally implement the following methods:

close Close external tool
labelDefinitionLoadListener Update new label definitions from external tool
labelLoadListener Update new label data from external tool

The client class can call the following methods:

4 Objects in Automated Driving System Toolbox

4-4

addLabelData Add custom label data at current time
dataSourceChangeListener Update external tool when you add data source to app
disconnect Disconnect external tool from app
queryLabelData Query for custom label data at current time
updateLabelerCurrentTime Update current time for app

Examples

Connect Lidar Display to Ground Truth Labeler

Connect a lidar data visualization tool to the Ground Truth Labeler app. Use the app and
tool to display synchronized lidar and video data. To use another set of data, modify the
MATLAB code in this example.

Specify the video name to display in the Ground Truth Labeler.

videoName = '01_city_c2s_fcw_10s.mp4';

Add the path to the lidar display data.

addpath(fullfile(matlabroot,'toolbox','driving','drivingdemos'));

Connect the lidar display to the Ground Truth Labeler.

groundTruthLabeler(videoName,'ConnectorTargetHandle',@LidarDisplay);

 driving.connector.Connector class

4-5

4 Objects in Automated Driving System Toolbox

4-6

See Also
Apps
Ground Truth Labeler

 driving.connector.Connector class

4-7

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-8

addLabelData
Class: driving.connector.Connector

Add custom label data at current time

Syntax
addLabelData(connectorObj,labelData)

Description
addLabelData(connectorObj,labelData) adds the custom label data related to the
current time that is shown in the Ground Truth Labeler app. The client calls this
method using the connectorObj object.

The label data added using this method is incorporated into the groundTruth object,
which is exported by the Ground Truth Labeler app. The label data is added as a
custom label, with its name specified by the LabelName property.

Input Arguments
connectorObj — Connector object
object

Connector object, specified as a driving.connector.Connector object.

labelData — Label data
cell array of character vectors | string array

Label data, specified as a cell array of character vectors or as a string array. Each
element of labelData must correspond to a label stored in the labelData property of
the input driving.connector.Connector object, connectorObj.

 addLabelData

4-9

See Also
Apps
Ground Truth Labeler

Functions
driving.connector.Connector | groundTruth

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-10

close
Class: driving.connector.Connector

Close external tool

Syntax
close(connectorObj)

Description
close(connectorObj) provides the option to close the external tool when the Ground
Truth Labeler closes. The app calls this method using the connectorObj object.

Input Arguments
connectorObj — Connector object
object

Connector object, specified as a driving.connector.Connector object.

See Also
Apps
Ground Truth Labeler

Functions
driving.connector.Connector

Introduced in R2017a

 close

4-11

dataSourceChangeListener
Class: driving.connector.Connector

Update external tool when you add data source to app

Syntax
dataSourceChangeListener(connectorObj)

Description
dataSourceChangeListener(connectorObj) provides an option to update the
external tool when a new data source is loaded into the Ground Truth Labeler app. The
app calls this method using the connectorObj object. You can optionally use this method
to react to a new data source being connected to the app.

A new data source can be a video, image sequence, or custom reader. You can load a new
data source while loading a new session.

Input Arguments
connectorObj — Connector object
object

Connector object, specified as a driving.connector.Connector object.

See Also
Apps
Ground Truth Labeler

Functions
driving.connector.Connector

4 Objects in Automated Driving System Toolbox

4-12

Introduced in R2017a

 dataSourceChangeListener

4-13

disconnect
Class: driving.connector.Connector

Disconnect external tool from app

Syntax
disconnect(connectorObj)

Description
disconnect(connectorObj) disconnects the external tool from the Ground Truth
Labeler app. After the external tool is disconnected, the Ground Truth Labeler app no
longer calls the frameChangeListener method in the client class. The client calls this
method using the connectorObj object.

Input Arguments
connectorObj — Connector object
object

Connector object, specified as a driving.connector.Connector object.

See Also
Apps
Ground Truth Labeler

Functions
driving.connector.Connector

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-14

frameChangeListener
Class: driving.connector.Connector

Update external tool when a new frame is detected

Syntax
frameChangeListener(connectorObj)

Description
frameChangeListener(connectorObj) provides an option to synchronize the
external tool with frame changes in the Ground Truth Labeler app. The app calls this
method whenever a new frame is displayed in the app and must be implemented by the
client class.

Input Arguments
connectorObj — Connector object
object

Connector object, specified as a driving.connector.Connector object.

See Also
Apps
Ground Truth Labeler

Functions
driving.connector.Connector

Introduced in R2017a

 frameChangeListener

4-15

labelDefinitionLoadListener
Class: driving.connector.Connector

Update new label definitions from external tool

Syntax
labelDefinitionLoadListener(connectorObj)

Description
labelDefinitionLoadListener(connectorObj) provides an option to update the
external tool when a new set of label definitions is imported into the Ground Truth
Labeler app. The app calls this method using the conectorObj object. You can
optionally use this method to react to a new data source being connected to the app.

Input Arguments
connectorObj — Connector object
object

Connector object, specified as a driving.connector.Connector object.

See Also
Apps
Ground Truth Labeler

Functions
driving.connector.Connector

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-16

labelLoadListener
Class: driving.connector.Connector

Update new label data from external tool

Syntax
labelLoadListener(connectorObj)

Description
labelLoadListener(connectorObj) provides the option to update the external tool
when a new set of label data or new session with label data is imported into the Ground
Truth Labeler app. The app calls this method using the connectorObj object. Use this
method to react to new label data being loaded into the app.

Input Arguments
connectorObj — Connector object
object

Connector object, specified as a driving.connector.Connector object.

See Also
Apps
Ground Truth Labeler

Functions
driving.connector.Connector

Introduced in R2017a

 labelLoadListener

4-17

queryLabelData
Class: driving.connector.Connector

Query for custom label data at current time

Syntax
queryLabelData(connectorObj)

Description
queryLabelData(connectorObj) queries label data related to the current time in the
Ground Truth Labeler app. The client calls this method using the connectorObj.

Input Arguments
connectorObj — Connector object
object

Connector object, specified as a driving.connector.Connector object.

See Also
Apps
Ground Truth Labeler

Functions
driving.connector.Connector

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-18

updateLabelerCurrentTime
Class: driving.connector.Connector

Update current time for app

Syntax
updateLabelerCurrentTime(connectorObj,newTime)

Description
updateLabelerCurrentTime(connectorObj,newTime) updates the current time in
the Ground Truth Labeler app to the specified new time. The client calls this method
using the connectorObj object.

Input Arguments
connectorObj — Connector object
object

Connector object, specified as a driving.connector.Connector object.

newTime — Current time for app
scalar in seconds

Current time for app, specified as a scalar in seconds. The newTime value sets the
current time in the Ground Truth Labeler app.

See Also
Apps
Ground Truth Labeler

 updateLabelerCurrentTime

4-19

Functions
driving.connector.Connector

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-20

geoplayer
Visualize streaming geographic map data

Description
The geoplayer object displays a stream of geographic coordinates on a map.

Creation
Use the geoplayer function to create a player for streaming geographic coordinates.

Syntax
player = geoplayer(latCenter,lonCenter)
player = geoplayer(latCenter,lonCenter,zoomLevel)
player = geoplayer(___ ,Name,Value)

Description
player = geoplayer(latCenter,lonCenter) creates a streaming geographic
player, centered at latitude coordinate latCenter and longitude coordinate lonCenter.

player = geoplayer(latCenter,lonCenter,zoomLevel) creates a streaming
geographic player with a map magnification specified by zoomLevel.

player = geoplayer(___ ,Name,Value) sets properties of the geoplayer by using
name-value pair arguments. Name is the property name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can specify several name-value
pair arguments in any order as Name1,Value1,...,NameN,ValueN.

For example, geoplayer(45,0,'HistoryDepth',5) creates a geoplayer centered at
the (lat,lon) coordinate (45,0), and sets the HistoryDepth property to display the five
previous geographic coordinates.

 geoplayer

4-21

Input Arguments
latCenter — Latitude coordinate
numeric scalar in the range (-90, 90)

Latitude coordinate at which the geoplayer is centered, specified as a numeric scalar in
the range (-90, 90).
Data Types: single | double

lonCenter — Longitude coordinate
numeric scalar in the range [-180, 180]

Longitude coordinate at which the geoplayer is centered, specified as a numeric scalar in
the range [-180, 180].
Data Types: single | double

zoomLevel — Magnification
15 | scalar integer in the range [0, 25]

Magnification of the geoplayer, specified as a scalar integer in the range [0, 25]. The
magnification occurs on a logarithmic scale with base 2. Increasing zoomLevel by one
doubles the map scale.

Properties
HistoryDepth — Number of previous geographic coordinates to display
0 (default) | scalar integer | Inf

Number of previous geographic coordinates to display, specified as a scalar integer or
Inf. A value of 0 displays only the current geographic coordinates. A value of Inf
displays all geographic coordinates previously plotted using plotPosition.
Example: 7

HistoryStyle — Style of displayed geographic coordinates
'point' (default) | 'line'

Style of displayed geographic coordinates, specified as one of the following:

4 Objects in Automated Driving System Toolbox

4-22

• 'point' — Display the track as discrete, unconnected points.
• 'line' — Display the track as a single connected line.

Parent — Player axes handle
figure graphics object | panel graphics object

Player axes handle, specified as a figure or uipanel graphics object. If you do not
specify 'Parent', then geoplayer creates the player in a new figure.

Object Functions
plotPosition Display current position in geoplayer
plotRoute Display continuous route in geoplayer
reset Remove all existing plots from geoplayer
show Make geoplayer figure visible
hide Make geoplayer figure invisible
isOpen Return true if geoplayer is visible

Examples

Animate Sequence of Latitude and Longitude Coordinates

Load latitude and longitude coordinates.

data = load('geoSequence.mat');

Create the geoplayer and configure it to display all points in the history.

player = geoplayer(data.latitude(1),data.longitude(1),17,'HistoryDepth',Inf);

Display the coordinates in a sequence.

 for i = 1:length(data.latitude)
 plotPosition(player,data.latitude(i),data.longitude(i));
 pause(0.01)
 end

 geoplayer

4-23

View Position of a Vehicle Along a Route

Load a sequence of latitude and longitude coordinates.

data = load('geoRoute.mat');

Create the geoplayer and set the zoom level to 12. The map is zoomed out by a factor of 8
compared to the default zoom level.

4 Objects in Automated Driving System Toolbox

4-24

player = geoplayer(data.latitude(1),data.longitude(1),12);

Display the full route.

plotRoute(player,data.latitude,data.longitude);

Display the coordinates in a sequence. The circle marker indicates the current position.

for i = 1:length(data.latitude)
 plotPosition(player,data.latitude(i),data.longitude(i));
 pause(0.05)
end

 geoplayer

4-25

Limitations
• Geographic map tiles are not available for all locations.

Tips
• geoplayer displays geographic map tiles using the World Street Map provided by

Esri®. This basemap requires access to an internet connection to fetch map tiles. For
more information about the map, see World Street Map on the Esri ArcGIS website.

• The geoplayer automatically scrolls the map whenever it plots a position that is
outside the current view of the map.

See Also
geobubble

Introduced in R2018a

4 Objects in Automated Driving System Toolbox

4-26

http://goto.arcgisonline.com/maps/World_Street_Map

plotPosition
Display current position in geoplayer

Syntax
plotPosition(player,latitude,longitude)
plotPosition(player,latitude,longitude,Name,Value)

Description
plotPosition(player,latitude,longitude) plots a point with latitude and
longitude coordinates in a geoplayer.

plotPosition(player,latitude,longitude,Name,Value) uses Name,Value pair
arguments to modify the visual style of the plotted points.

For example, plotPosition(player,45,0,'Color','w','Marker','*') plots a
point in the geoplayer as a white star.

Examples

View Position of a Vehicle Along a Route

Load a sequence of latitude and longitude coordinates.

data = load('geoRoute.mat');

Create the geoplayer and set the zoom level to 12. The map is zoomed out by a factor of 8
compared to the default zoom level.

player = geoplayer(data.latitude(1),data.longitude(1),12);

Display the full route.

plotRoute(player,data.latitude,data.longitude);

 plotPosition

4-27

Display the coordinates in a sequence. The circle marker indicates the current position.

for i = 1:length(data.latitude)
 plotPosition(player,data.latitude(i),data.longitude(i));
 pause(0.05)
end

4 Objects in Automated Driving System Toolbox

4-28

Input Arguments
player — Streaming geographic player
geoplayer object

Streaming geographic player, specified as a geoplayer object.

latitude — Latitude coordinate
numeric scalar in the range [-90, 90]

Latitude coordinate of the point to display in the geoplayer, specified as a numeric scalar
in the range [-90, 90].
Data Types: single | double

longitude — Longitude coordinate
numeric scalar in the range [-180, 180]

Longitude coordinate of the point to display in the geoplayer, specified as a numeric
scalar in the range [-180, 180].
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Color','k'

Label — Text description
'' (default) | character vector | string scalar

Text description of the point, specified as the comma-separated pair consisting of
'Label' and a character vector or string scalar.
Example: 'Label','07:45:00AM'

Color — Marker color
ColorSpec

 plotPosition

4-29

Marker color, specified as the comma-separated pair consisting of 'Color' and a
ColorSpec, such as an RGB triplet or one of the MATLAB predefined names. Color is
used only for filled marker symbols. By default, the marker color is selected automatically.
Example: 'Color',[1 0 1]
Example: 'Color','m'
Example: 'Color','magenta'

Marker — Marker symbol
'o' (default) | character

Marker symbol, specified as the comma-separated pair consisting of 'Marker' and one of
these characters.

Value Description
'.' Point
'x' Cross
'+' Plus sign
'*' Asterisk
'o' Circle (default)
's' Square
'd' Diamond
'p' Five-pointed star (pentagram)
'h' Six-pointed star (hexagram)
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'<' Left-pointing triangle
'>' Right-pointing triangle

MarkerSize — Diameter of marker
6 (default) | positive scalar

Approximate diameter of marker in points, specified as the comma-separated pair
consisting of 'MarkerSize' and a positive scalar. 1 point = 1/72 inch. A marker size
larger than 6 can reduce the rendering performance.

4 Objects in Automated Driving System Toolbox

4-30

See Also
geoplayer | plotRoute | reset

Introduced in R2018a

 plotPosition

4-31

plotRoute
Display continuous route in geoplayer

Syntax
plotRoute(player,latitude,longitude)
plotRoute(player,latitude,longitude,Name,Value)

Description
plotRoute(player,latitude,longitude) displays a series of points specified by
latitude and longitude coordinates as a route in a geoplayer. The route appears as a
continuous line on a map.

plotRoute(player,latitude,longitude,Name,Value) uses Name,Value pair
arguments to modify the visual style of the route.

For example, plotRoute(player,[45 46],[0 0],'Color','k') plots a route in a
geoplayer as a black line.

Examples

View Position of a Vehicle Along a Route

Load a sequence of latitude and longitude coordinates.

data = load('geoRoute.mat');

Create the geoplayer and set the zoom level to 12. The map is zoomed out by a factor of 8
compared to the default zoom level.

player = geoplayer(data.latitude(1),data.longitude(1),12);

Display the full route.

4 Objects in Automated Driving System Toolbox

4-32

plotRoute(player,data.latitude,data.longitude);

Display the coordinates in a sequence. The circle marker indicates the current position.

for i = 1:length(data.latitude)
 plotPosition(player,data.latitude(i),data.longitude(i));
 pause(0.05)
end

 plotRoute

4-33

Input Arguments
player — Streaming geographic player
geoplayer object

Streaming geographic player, specified as a geoplayer object.

latitude — Latitude coordinates
numeric vector

Latitude coordinates of points along the route, specified as a numeric vector with
elements in the range [-90, 90].
Data Types: single | double

longitude — Longitude coordinates
numeric vector

Longitude coordinates of points along the route, specified as a numeric vector with
elements in the range [-180, 180].
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Color','g'

Color — Line color
ColorSpec

Line color, specified as the comma-separated pair consisting of 'Color' and a
ColorSpec, such as an RGB triplet or one of the MATLAB predefined names. By default,
the line color is selected automatically.
Example: 'Color',[1 0 1]
Example: 'Color','m'
Example: 'Color','magenta'

4 Objects in Automated Driving System Toolbox

4-34

LineWidth — Line width
2 (default) | positive number

Line width in points, specified as the comma-separated pair consisting of 'LineWidth'
and a positive number. 1 point = 1/72 inch.

ShowEndpoints — Display origin and destination
'on' (default) | 'off'

Display the origin and destination points, specified as the comma-separated pair
consisting of 'ShowEndpoints' and 'on' or 'off'. Specify 'on' to display the origin
and destination points. The origin marker is white and the destination marker is filled
with color.

See Also
geoplayer | plotPosition | reset

Introduced in R2018a

 plotRoute

4-35

reset
Remove all existing plots from geoplayer

Syntax
reset(player)

Description
reset(player) removes all previously plotted points and routes from the geoplayer.

Examples

Reset Geoplayer Figure

Load a sequence of latitude and longitude coordinates.

data = load('geoRoute.mat');

Create a geoplayer with a zoom level of 12. Configure the geoplayer to display all points
in the history.

player = geoplayer(data.latitude(1),data.longitude(1),12,'HistoryDepth',Inf);

Display the full route.

plotRoute(player,data.latitude,data.longitude);

Display the coordinates in a sequence. The circle marker indicates the current position.
At the 200th point, reset the geoplayer. Observe that the route and all previously plotted
points are removed.

for i = 1:length(data.latitude)
 plotPosition(player,data.latitude(i),data.longitude(i));

4 Objects in Automated Driving System Toolbox

4-36

 if i == 200
 reset(player)
 end

 pause(.05)
end

 reset

4-37

Input Arguments
player — Streaming geographic player
geoplayer object

Streaming geographic player, specified as a geoplayer object.

See Also
plotPosition | plotRoute

Introduced in R2018a

4 Objects in Automated Driving System Toolbox

4-38

show
Make geoplayer figure visible

Syntax
show(player)

Description
show(player) makes the geoplayer figure visible again after closing or hiding it.

Examples

Hide and Show Geoplayer Figure

Load a sequence of latitude and longitude coordinates.

data = load('geoRoute.mat');

Create a geoplayer with a zoom level of 10. Configure it to show the complete history of
plotted points.

player = geoplayer(data.latitude(1),data.longitude(1),10,'HistoryDepth',Inf);

Display the first half of the geographic coordinates in a sequence. The circle marker
indicates the current position.

halfLength = round(length(data.latitude)/2);

for i = 1:halfLength
 plotPosition(player,data.latitude(i),data.longitude(i));
end

 show

4-39

Hide the geoplayer and confirm that it is no longer visible.

hide(player)
isOpen(player)

ans = logical
 0

Add the remaining half of the geographic coordinates to the map.

4 Objects in Automated Driving System Toolbox

4-40

for i = halfLength+1:length(data.latitude)
 plotPosition(player,data.latitude(i),data.longitude(i));
end

Show the geoplayer. The geoplayer now displays both halves of the route.

show(player)

 show

4-41

Input Arguments
player — Streaming geographic player
geoplayer object

Streaming geographic player, specified as a geoplayer object.

See Also
hide | isOpen

Introduced in R2018a

4 Objects in Automated Driving System Toolbox

4-42

hide
Make geoplayer figure invisible

Syntax
hide(player)

Description
hide(player) hides the geoplayer figure. To redisplay the geoplayer, use
show(player).

Examples

Hide and Show Geoplayer Figure

Load a sequence of latitude and longitude coordinates.

data = load('geoRoute.mat');

Create a geoplayer with a zoom level of 10. Configure it to show the complete history of
plotted points.

player = geoplayer(data.latitude(1),data.longitude(1),10,'HistoryDepth',Inf);

Display the first half of the geographic coordinates in a sequence. The circle marker
indicates the current position.

halfLength = round(length(data.latitude)/2);

for i = 1:halfLength
 plotPosition(player,data.latitude(i),data.longitude(i));
end

 hide

4-43

Hide the geoplayer and confirm that it is no longer visible.

hide(player)
isOpen(player)

ans = logical
 0

Add the remaining half of the geographic coordinates to the map.

4 Objects in Automated Driving System Toolbox

4-44

for i = halfLength+1:length(data.latitude)
 plotPosition(player,data.latitude(i),data.longitude(i));
end

Show the geoplayer. The geoplayer now displays both halves of the route.

show(player)

 hide

4-45

Input Arguments
player — Streaming geographic player
geoplayer object

Streaming geographic player, specified as a geoplayer object.

See Also
isOpen | show

Introduced in R2018a

4 Objects in Automated Driving System Toolbox

4-46

isOpen
Return true if geoplayer is visible

Syntax
tf = isOpen(player)

Description
tf = isOpen(player) returns true or false to indicate whether the geoplayer figure
is visible.

Examples

Plot Points While Geoplayer Is Open

Load a sequence of latitude and longitude coordinates.

data = load('geoRoute.mat');

Create a geoplayer with a zoom level of 12. Configure the geoplayer to display all points
in the history.

player = geoplayer(data.latitude(1),data.longitude(1),12,'HistoryDepth',Inf);

Display the geographic coordinates in a sequence by using the plotPosition function.
Put the call to plotPosition inside a while loop, so that the geoplayer plots points only
while the figure is open. You can exit the loop by closing the figure. If you do not close the
figure, then the loop automatically exits when all points are plotted.

i = 1;
numPoints = length(data.latitude);
while isOpen(player) && i<=numPoints
 plotPosition(player,data.latitude(i),data.longitude(i))
 pause(0.1)

 isOpen

4-47

 i=i+1;
end

You can make the geoplayer figure visible again by using the show function.

show(player)

4 Objects in Automated Driving System Toolbox

4-48

Input Arguments
player — Streaming geographic player
geoplayer object

Streaming geographic player, specified as a geoplayer object.

Output Arguments
tf — Geoplayer is visible
true | false

Geoplayer is visible, returned as true when the geoplayer figure is open, and false
otherwise.

See Also
hide | show

Introduced in R2018a

 isOpen

4-49

monoCamera
Configure monocular camera sensor

Description
The monoCamera object holds information about the configuration of a monocular camera
sensor. Configuration information includes the camera intrinsics, camera extrinsics such
as its orientation (as described by pitch, yaw, and roll), and the camera location within the
vehicle. To estimate the intrinsic and extrinsic camera parameters, see “Calibrate a
Monocular Camera”.

For images captured by the camera, you can use the imageToVehicle and
vehicleToImage functions to transform point locations between image coordinates and
vehicle coordinates. These functions apply projective transformations (homography),
which enable you to estimate distances from a camera mounted on the vehicle to
locations on a flat road surface.

Creation

Syntax
sensor = monoCamera(intrinsics,height)
sensor = monoCamera(intrinsics,height,Name,Value)

Description
sensor = monoCamera(intrinsics,height) creates a monoCamera object that
contains the configuration of a monocular camera sensor, given the intrinsic parameters
of the camera and the height of the camera above the ground. intrinsics and height
set the Intrinsics and Height properties of the camera.

sensor = monoCamera(intrinsics,height,Name,Value) sets properties using one
or more name-value pairs. For example, monoCamera(intrinsics,1.5,'Pitch',1)

4 Objects in Automated Driving System Toolbox

4-50

creates a monocular camera sensor that is 1.5 meters above the ground and has a 1-
degree pitch toward the ground. Enclose each property name in quotes.

Properties
Intrinsics — Intrinsic camera parameters
cameraIntrinsics object | cameraParameters object

Intrinsic camera parameters, specified as either a cameraIntrinsics or
cameraParameters object. The intrinsic camera parameters include the focal length and
optical center of the camera, and the size of the image produced by the camera.

You can set this property when you create the object. After you create the object, this
property is read-only.

Height — Height from road surface to camera sensor
scalar

Height from the road surface to the camera sensor, specified as a scalar. The height is the
perpendicular distance from the ground to the focal point of the camera. Specify the
height in world units, such as meters. To estimate this value, use the
estimateMonoCameraParameters function.

Pitch — Pitch angle
scalar

Pitch angle between the horizontal plane of the vehicle and the optical axis of the camera,
specified as a scalar in degrees. To estimate this value, use the
estimateMonoCameraParameters function.

Pitch uses the ISO convention for rotation, with a clockwise positive angle direction
when looking in the positive direction of the vehicle's YV axis.

 monoCamera

4-51

For more details, see “Angle Directions” on page 4-63.

Yaw — Yaw angle
scalar

Yaw angle between the XV axis of the vehicle and the optical axis of the camera, specified
as a scalar in degrees. To estimate this value, use the
estimateMonoCameraParameters function.

Yaw uses the ISO convention for rotation, with a clockwise positive angle direction when
looking in the positive direction of the vehicle's ZV axis.

4 Objects in Automated Driving System Toolbox

4-52

For more details, see “Angle Directions” on page 4-63.

Roll — Roll angle
scalar

Roll angle of the camera around its optical axis, returned as a scalar in degrees. To
estimate this value, use the estimateMonoCameraParameters function.

Roll uses the ISO convention for rotation, with a clockwise positive angle direction when
looking in the positive direction of the vehicle's XV axis.

For more details, see “Angle Directions” on page 4-63.

SensorLocation — Location of center of camera sensor
[0 0] (default) | two-element vector

Location of the center of the camera sensor, specified as a two-element vector of the form
[x y]. Use this property to change the placement of the camera. Units are in the vehicle
coordinate system (XV, YV, ZV).

By default, the camera sensor is located at the (XV, YV) origin, at the height specified by
Height.

 monoCamera

4-53

WorldUnits — World coordinate system units
'meters' | character vector | string scalar

World coordinate system units, specified as a character vector or string scalar. This
property only stores the unit type and does not affect any calculations. Any text is valid.

You can set this property when you create the object. After you create the object, this
property is read-only.

4 Objects in Automated Driving System Toolbox

4-54

Object Functions
imageToVehicle Convert image coordinates to vehicle coordinates
vehicleToImage Convert vehicle coordinates to image coordinates

Examples

Create Monocular Camera Object

Create a forward-facing monocular camera sensor mounted on an ego vehicle. Examine
an image captured from the camera and determine locations within the image in both
vehicle and image coordinates.

Set the intrinsic parameters of the camera. Specify the focal length, the principal point of
the image plane, and the output image size. Units are in pixels. Save the intrinsics as a
cameraIntrinsics object.

focalLength = [800 800];
principalPoint = [320 240];
imageSize = [480 640];

intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

Specify the position of the camera. Position the camera 2.18 meters above the ground
with a 14-degree pitch toward the ground.

height = 2.18;
pitch = 14;

Define a monocular camera sensor using the intrinsic camera parameters and the position
of the camera. Load an image from the camera.

sensor = monoCamera(intrinsics,height,'Pitch',pitch);

Ioriginal = imread('road.png');
figure
imshow(Ioriginal)
title('Original Image')

 monoCamera

4-55

Determine the image coordinates of a point 10 meters directly in front of the camera. The
X-axis points forward from the camera and the Y-axis points to the left.

xyVehicleLoc1 = [10 0];
xyImageLoc1 = vehicleToImage(sensor,xyVehicleLoc1)

xyImageLoc1 = 1×2

 320.0000 216.2296

Display the point on the image.

4 Objects in Automated Driving System Toolbox

4-56

IvehicleToImage = insertMarker(Ioriginal,xyImageLoc1);
IvehicleToImage = insertText(IvehicleToImage,xyImageLoc1 + 5,'10 meters');
figure
imshow(IvehicleToImage)
title('Vehicle-to-Image Point')

Determine the vehicle coordinates of a point that lies on the road surface in the image.

xyImageLoc2 = [300 300];
xyVehicleLoc2 = imageToVehicle(sensor,xyImageLoc2)

xyVehicleLoc2 = 1×2

 monoCamera

4-57

 6.5959 0.1732

The point is about 6.6 meters in front of the vehicle and about 0.17 meters to the left of
the vehicle center.

Display the vehicle coordinates of the point on the image.

IimageToVehicle = insertMarker(Ioriginal,xyImageLoc2);
displayText = sprintf('(%.2f m, %.2f m)',xyVehicleLoc2);
IimageToVehicle = insertText(IimageToVehicle,xyImageLoc2 + 5,displayText);

figure
imshow(IimageToVehicle)
title('Image-to-Vehicle Point')

4 Objects in Automated Driving System Toolbox

4-58

Generate Visual Detections from Monocular Camera

Create a vision sensor by using a monocular camera configuration, and generate
detections from that sensor.

Specify the intrinsic parameters of the camera and create a monoCamera object from
these parameters. The camera is mounted on top of an ego car at a height of 1.5 meters
above the ground and a pitch of 1 degree toward the ground.

focalLength = [800 800];
principalPoint = [320 240];

 monoCamera

4-59

imageSize = [480 640];
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

height = 1.5;
pitch = 1;
monoCamConfig = monoCamera(intrinsics,height,'Pitch',pitch);

Create a vision detection generator using the monocular camera configuration.

visionSensor = visionDetectionGenerator(monoCamConfig);

Generate a driving scenario with an ego car and two target cars. Position the first target
car 30 meters directly in front of the ego car. Position the second target car 20 meters in
front of the ego car but offset to the left by 3 meters.

scenario = drivingScenario;
egoCar = vehicle(scenario);
targetCar1 = vehicle(scenario,'Position',[30 0 0]);
targetCar2 = vehicle(scenario,'Position',[20 3 0]);

Use a bird's-eye plot to display the vehicle outlines and sensor coverage area.

figure
bep = birdsEyePlot('XLim',[0 50],'YLim',[-20 20]);

olPlotter = outlinePlotter(bep);
[position,yaw,length,width,originOffset,color] = targetOutlines(egoCar);
plotOutline(olPlotter,position,yaw,length,width);

caPlotter = coverageAreaPlotter(bep,'DisplayName','Coverage area','FaceColor','blue');
plotCoverageArea(caPlotter,visionSensor.SensorLocation,visionSensor.MaxRange, ...
 visionSensor.Yaw,visionSensor.FieldOfView(1))

4 Objects in Automated Driving System Toolbox

4-60

Obtain the poses of the target cars from the perspective of the ego car. Use these poses to
generate detections from the sensor.

poses = targetPoses(egoCar);
[dets,numValidDets] = visionSensor(poses,scenario.SimulationTime);

Display the (X,Y) positions of the valid detections. For each detection, the (X,Y) positions
are the first two values of the Measurement field.

for i = 1:numValidDets
 XY = dets{i}.Measurement(1:2);
 detXY = sprintf('Detection %d: X = %.2f meters, Y = %.2f meters',i,XY);
 disp(detXY)
end

 monoCamera

4-61

Detection 1: X = 19.09 meters, Y = 2.77 meters
Detection 2: X = 27.81 meters, Y = 0.08 meters

Definitions

Vehicle Coordinate System
In the vehicle coordinate system (XV, YV, ZV) defined by monoCamera:

• The XV-axis points forward from the vehicle.
• The YV-axis points to the left, as viewed when facing forward.
• The ZV-axis points up from the ground to maintain the right-handed coordinate system.

The default origin of this coordinate system is on the road surface, directly below the
camera center. The focal point of the camera defines this center point.

4 Objects in Automated Driving System Toolbox

4-62

To change the placement of the origin within the vehicle coordinate system, update the
SensorLocation property.

For more details about the vehicle coordinate system, see “Coordinate Systems in
Automated Driving System Toolbox”.

Angle Directions
The monocular camera sensor uses clockwise positive angle directions when looking in
the positive direction of the Z-, Y-, and X-axes, respectively.

 monoCamera

4-63

4 Objects in Automated Driving System Toolbox

4-64

See Also
Apps
Camera Calibrator

Functions
estimateCameraParameters | estimateMonoCameraParameters | extrinsics

Objects
birdsEyeView | cameraIntrinsics | cameraParameters

Topics
“Calibrate a Monocular Camera”
“Configure Monocular Fisheye Camera”
“Visual Perception Using Monocular Camera”
“Coordinate Systems in Automated Driving System Toolbox”

Introduced in R2017a

 monoCamera

4-65

vehicleToImage
Convert vehicle coordinates to image coordinates

Syntax
imagePoints = vehicleToImage(monoCam,vehiclePoints)

Description
imagePoints = vehicleToImage(monoCam,vehiclePoints) converts [x y] or [x y
z] vehicle coordinates to [x y] image coordinates by applying a projective transformation.
The monocular camera object, monoCam, contains the camera parameters.

Examples

Create Monocular Camera Object

Create a forward-facing monocular camera sensor mounted on an ego vehicle. Examine
an image captured from the camera and determine locations within the image in both
vehicle and image coordinates.

Set the intrinsic parameters of the camera. Specify the focal length, the principal point of
the image plane, and the output image size. Units are in pixels. Save the intrinsics as a
cameraIntrinsics object.

focalLength = [800 800];
principalPoint = [320 240];
imageSize = [480 640];

intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

Specify the position of the camera. Position the camera 2.18 meters above the ground
with a 14-degree pitch toward the ground.

4 Objects in Automated Driving System Toolbox

4-66

height = 2.18;
pitch = 14;

Define a monocular camera sensor using the intrinsic camera parameters and the position
of the camera. Load an image from the camera.

sensor = monoCamera(intrinsics,height,'Pitch',pitch);

Ioriginal = imread('road.png');
figure
imshow(Ioriginal)
title('Original Image')

 vehicleToImage

4-67

Determine the image coordinates of a point 10 meters directly in front of the camera. The
X-axis points forward from the camera and the Y-axis points to the left.

xyVehicleLoc1 = [10 0];
xyImageLoc1 = vehicleToImage(sensor,xyVehicleLoc1)

xyImageLoc1 = 1×2

 320.0000 216.2296

Display the point on the image.

IvehicleToImage = insertMarker(Ioriginal,xyImageLoc1);
IvehicleToImage = insertText(IvehicleToImage,xyImageLoc1 + 5,'10 meters');
figure
imshow(IvehicleToImage)
title('Vehicle-to-Image Point')

4 Objects in Automated Driving System Toolbox

4-68

Determine the vehicle coordinates of a point that lies on the road surface in the image.

xyImageLoc2 = [300 300];
xyVehicleLoc2 = imageToVehicle(sensor,xyImageLoc2)

xyVehicleLoc2 = 1×2

 6.5959 0.1732

The point is about 6.6 meters in front of the vehicle and about 0.17 meters to the left of
the vehicle center.

Display the vehicle coordinates of the point on the image.

 vehicleToImage

4-69

IimageToVehicle = insertMarker(Ioriginal,xyImageLoc2);
displayText = sprintf('(%.2f m, %.2f m)',xyVehicleLoc2);
IimageToVehicle = insertText(IimageToVehicle,xyImageLoc2 + 5,displayText);

figure
imshow(IimageToVehicle)
title('Image-to-Vehicle Point')

4 Objects in Automated Driving System Toolbox

4-70

Input Arguments
monoCam — Monocular camera parameters
monoCamera object

Monocular camera parameters, specified as a monoCamera object.

vehiclePoints — Vehicle points
M-by-2 matrix | M-by-3 matrix

Vehicle points, specified as an M-by-2 or M-by-3 matrix containing M number of [x y] or [x
y z] vehicle coordinates.

Output Arguments
imagePoints — Image points
M-by-2 matrix

Image points, returned as an M-by-2 matrix containing M number of [x y] image
coordinates.

See Also
Objects
monoCamera

Functions
imageToVehicle

Topics
“Coordinate Systems in Automated Driving System Toolbox”

Introduced in R2017a

 vehicleToImage

4-71

imageToVehicle
Convert image coordinates to vehicle coordinates

Syntax
vehiclePoints = imageToVehicle(monoCam,imagePoints)

Description
vehiclePoints = imageToVehicle(monoCam,imagePoints) converts image
coordinates to [x y] vehicle coordinates by applying a projective transformation. The
monocular camera object, monoCam, contains the camera parameters.

Examples

Create Monocular Camera Object

Create a forward-facing monocular camera sensor mounted on an ego vehicle. Examine
an image captured from the camera and determine locations within the image in both
vehicle and image coordinates.

Set the intrinsic parameters of the camera. Specify the focal length, the principal point of
the image plane, and the output image size. Units are in pixels. Save the intrinsics as a
cameraIntrinsics object.

focalLength = [800 800];
principalPoint = [320 240];
imageSize = [480 640];

intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

Specify the position of the camera. Position the camera 2.18 meters above the ground
with a 14-degree pitch toward the ground.

4 Objects in Automated Driving System Toolbox

4-72

height = 2.18;
pitch = 14;

Define a monocular camera sensor using the intrinsic camera parameters and the position
of the camera. Load an image from the camera.

sensor = monoCamera(intrinsics,height,'Pitch',pitch);

Ioriginal = imread('road.png');
figure
imshow(Ioriginal)
title('Original Image')

 imageToVehicle

4-73

Determine the image coordinates of a point 10 meters directly in front of the camera. The
X-axis points forward from the camera and the Y-axis points to the left.

xyVehicleLoc1 = [10 0];
xyImageLoc1 = vehicleToImage(sensor,xyVehicleLoc1)

xyImageLoc1 = 1×2

 320.0000 216.2296

Display the point on the image.

IvehicleToImage = insertMarker(Ioriginal,xyImageLoc1);
IvehicleToImage = insertText(IvehicleToImage,xyImageLoc1 + 5,'10 meters');
figure
imshow(IvehicleToImage)
title('Vehicle-to-Image Point')

4 Objects in Automated Driving System Toolbox

4-74

Determine the vehicle coordinates of a point that lies on the road surface in the image.

xyImageLoc2 = [300 300];
xyVehicleLoc2 = imageToVehicle(sensor,xyImageLoc2)

xyVehicleLoc2 = 1×2

 6.5959 0.1732

The point is about 6.6 meters in front of the vehicle and about 0.17 meters to the left of
the vehicle center.

Display the vehicle coordinates of the point on the image.

 imageToVehicle

4-75

IimageToVehicle = insertMarker(Ioriginal,xyImageLoc2);
displayText = sprintf('(%.2f m, %.2f m)',xyVehicleLoc2);
IimageToVehicle = insertText(IimageToVehicle,xyImageLoc2 + 5,displayText);

figure
imshow(IimageToVehicle)
title('Image-to-Vehicle Point')

4 Objects in Automated Driving System Toolbox

4-76

Input Arguments
monoCam — Monocular camera parameters
monoCamera object

Monocular camera parameters, specified as a monoCamera object.

imagePoints — Image points
M-by-2 matrix

Image points, specified as an M-by-2 matrix containing M number of [x y] image
coordinates.

Output Arguments
vehiclePoints — Vehicle points
M-by-2 matrix

Vehicle points, returned as an M-by-2 matrix containing M number of [x y] vehicle
coordinates.

See Also
Objects
monoCamera

Functions
vehicleToImage

Topics
“Coordinate Systems in Automated Driving System Toolbox”

Introduced in R2017a

 imageToVehicle

4-77

birdsEyePlot
Plot detections and object tracking results around vehicle

Description
The birdsEyePlot object displays a bird's-eye plot of a 2-D scene in the immediate
vicinity of a vehicle. This type of plot can be used with sensors capable of detecting
objects and lanes. For an example of how to use birdsEyePlot, see the “Visualize
Sensor Coverage, Detections, and Tracks”.

Creation
bep = birdsEyePlot creates a bird’s-eye plot in a new figure.

bep = birdsEyePlot(Name,Value) creates a bird’s-eye plot in a new figure with
optional input properties specified by one or more Name,Value pair arguments.

Properties
Parent — Axes on which to plot
axes handle

Axes on which to plot, specified as an axes handle. By default, birdsEyePlot uses the
current axes handle, which is returned by the gca function.

Plotters — Plotters created for the bird's-eye plot
array

Plotters created for the bird's-eye plot, specified as an array.

XLimits — Limits of the x-axis
two-element row vector

Limits of the x-axis in vehicle coordinates, specified as a two-element row vector, [x1,x2].
The values x1 and x2 are the respective lower and upper limit ranges for the bird's-eye

4 Objects in Automated Driving System Toolbox

4-78

plot display. If you do not specify the limits, then the default values for the Parent axes are
used. See “Coordinate Systems in Automated Driving System Toolbox” for coordinate
system definitions.

YLimits — Limits of the y-axis
two-element row vector

Limits of the y-axis in vehicle coordinates, specified as a two-element row vector, [y1,y2].
The values y1 and y2 are the respective lower and upper limit ranges for the bird's-eye
plot display. If you do not specify the limits, then the default values for the Parent axes are
used. See “Coordinate Systems in Automated Driving System Toolbox” for coordinate
system definitions.

Object Functions

Plotter Objects
clearData Clear data from a specific plotter of bird’s-eye plot
clearPlotterData Clear data from bird’s-eye plot
coverageAreaPlotter Create bird’s-eye-view coverage area plotter
detectionPlotter Create bird’s-eye-view detection plotter
findPlotter Find plotters associated with bird’s-eye plot
laneBoundaryPlotter Create bird’s-eye-view lane boundary plotter
laneMarkingPlotter Bird’s-eye plot lane marking plotter
outlinePlotter Create bird's-eye-view outline plotter
pathPlotter Create bird’s-eye-view path plotter
trackPlotter Create bird’s-eye-view track plotter

Plotting Functions
plotCoverageArea Plot bird’s-eye view coverage area
plotDetection Plot a set of object detections
plotLaneBoundary Plot lane boundary for bird’s-eye plot
plotLaneMarking Plot lane markings on bird’s-eye plot
plotOutline Plot object outlines
plotPath Plot lane boundary for bird’s-eye plot
plotTrack Plot a set of detection tracks

 birdsEyePlot

4-79

Examples
Create and Display a Bird's-Eye Plot

Create the bird's-eye plot.

bep = birdsEyePlot('XLim',[0,90],'YLim',[-35,35]);

Display a coverage area with a field of view of 35 degrees and a range of 60 meters

caPlotter = coverageAreaPlotter(bep,'DisplayName','Radar Coverage Area');
mountPosition = [1 0];
range = 60;
orientation = 0;

4 Objects in Automated Driving System Toolbox

4-80

fieldOfView = 35;
plotCoverageArea(caPlotter,mountPosition,range,orientation,fieldOfView);

Display radar detections with coordinates at (30,-5),(50,-10), and (40,7).

radarPlotter = detectionPlotter(bep,'DisplayName','Radar Detections');
plotDetection(radarPlotter, [30 -5;50 -10;40 7]);

 birdsEyePlot

4-81

Create Bird's-Eye Plot with Coverage Area and Detection Plotters

Create a bird's-eye plot with the plotters and set selected properties.

bep = birdsEyePlot('XLim',[0 90],'YLim',[-35 35]);
coverageAreaPlotter(bep,'DisplayName','Radar coverage');
detectionPlotter(bep,'DisplayName','Radar detections');

4 Objects in Automated Driving System Toolbox

4-82

Use findPlotter to locate their plotters by display names.

caPlotter = findPlotter(bep,'DisplayName','Radar coverage');
radarPlotter = findPlotter(bep,'DisplayName','Radar detections');

Plot the coverage area and detected objects.

plotCoverageArea(caPlotter, [1 0],30,0,35);
plotDetection(radarPlotter, [30,5;30,-10;30,15]);

 birdsEyePlot

4-83

Clear data from the plot.

clearPlotterData(bep);

4 Objects in Automated Driving System Toolbox

4-84

Limitations
You cannot use the rectangle-zoom feature in the birdsEyePlot figure.

Tips
• The vehicle coordinate system defined by birdsEyePlot uses the X-axis pointing

forward from the vehicle and the Y-axis pointing to the left (as viewed when facing
forward). The coordinate system origin is with respect to the vehicle's center of
rotation, which is typically on the ground beneath the rear axle of the vehicle.

 birdsEyePlot

4-85

Vehicle Coordinate System
• To create and use a bird’s-eye plot, follow these steps:

1 Create a birdsEyePlot.
2 Create desired plotters for coverage areas, detections, tracks, lane boundary

markings, and paths using one of the birdsEyePlot methods.
3 Use the plotters to update the plot with corresponding information and data.

See Also
birdsEyeView

Topics
“Visualize Sensor Coverage, Detections, and Tracks”
“Coordinate Systems in Automated Driving System Toolbox”

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-86

clearData
Clear data from a specific plotter of bird’s-eye plot

Syntax
clearData(pl)

Description
clearData(pl) clears data belonging to the plotter pl associated with a bird’s-eye plot.
This method clears data from plotters created by the following plotter methods:

• detectionPlotter
• laneBoundaryPlotter
• laneMarkingPlotter
• outlinePlotter
• pathPlotter
• trackPlotter

Examples

Create Bird's-Eye Plot with Coverage Area and Detection Plotters

Create a bird's-eye plot with the plotters and set selected properties.

bep = birdsEyePlot('XLim',[0 90],'YLim',[-35 35]);
coverageAreaPlotter(bep,'DisplayName','Radar coverage');
detectionPlotter(bep,'DisplayName','Radar detections');

 clearData

4-87

Use findPlotter to locate their plotters by display names.

caPlotter = findPlotter(bep,'DisplayName','Radar coverage');
radarPlotter = findPlotter(bep,'DisplayName','Radar detections');

Plot the coverage area and detected objects.

plotCoverageArea(caPlotter, [1 0],30,0,35);
plotDetection(radarPlotter, [30,5;30,-10;30,15]);

4 Objects in Automated Driving System Toolbox

4-88

Clear data from the plot.

clearPlotterData(bep);

 clearData

4-89

Input Arguments
pl — Specific plotter belonging to a bird’s-eye plot
specific plotter of bird’s-eye plot handle

Specific plotter belonging to a bird’s-eye plot, specified as a plotter handle of
birdsEyePlot.

4 Objects in Automated Driving System Toolbox

4-90

See Also
Objects
birdsEyePlot | clearPlotterData

Introduced in R2017a

 clearData

4-91

clearPlotterData
Clear data from bird’s-eye plot

Syntax
clearPlotterData(bep)

Description
clearPlotterData(bep) clears data shown in the bird’s-eye plot from all the bep
plotters. Legend entries and coverage areas are not cleared from the plot.

Examples

Create Bird's-Eye Plot with Coverage Area and Detection Plotters

Create a bird's-eye plot with the plotters and set selected properties.

bep = birdsEyePlot('XLim',[0 90],'YLim',[-35 35]);
coverageAreaPlotter(bep,'DisplayName','Radar coverage');
detectionPlotter(bep,'DisplayName','Radar detections');

4 Objects in Automated Driving System Toolbox

4-92

Use findPlotter to locate their plotters by display names.

caPlotter = findPlotter(bep,'DisplayName','Radar coverage');
radarPlotter = findPlotter(bep,'DisplayName','Radar detections');

Plot the coverage area and detected objects.

plotCoverageArea(caPlotter, [1 0],30,0,35);
plotDetection(radarPlotter, [30,5;30,-10;30,15]);

 clearPlotterData

4-93

Clear data from the plot.

clearPlotterData(bep);

4 Objects in Automated Driving System Toolbox

4-94

Input Arguments
bep — Unpopulated bird’s-eye plot
birdsEyePlot handle

Unpopulated bird’s-eye plot, specified as a birdsEyePlot handle that you can update
with various plotters.

 clearPlotterData

4-95

See Also
Functions
birdsEyePlot

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-96

coverageAreaPlotter
Create bird’s-eye-view coverage area plotter

Syntax
caPlotter = coverageAreaPlotter(bep)
caPlotter = coverageAreaPlotter(bep,Name,Value)

Description
caPlotter = coverageAreaPlotter(bep) returns a plotter for displaying the
coverage area of a bird’s-eye plot.

caPlotter = coverageAreaPlotter(bep,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

Examples

Create and Display Coverage Area Bird's-Eye Plot

Create a bird's-eye plot and coverage area plotter.

bep = birdsEyePlot('XLim',[0, 90],'YLim',[-35, 35]);
caPlotter = coverageAreaPlotter(bep,'DisplayName','Radar coverage area');

 coverageAreaPlotter

4-97

Update the plotter with a 35-degree field of view and a 60-meter range.

mountPosition = [1 0];
range = 60;
orientation = 0;
fieldOfView = 35;
plotCoverageArea(caPlotter,mountPosition,range,orientation,fieldOfView);

4 Objects in Automated Driving System Toolbox

4-98

Input Arguments
bep — Unpopulated bird’s-eye plot
birdsEyePlot handle

Unpopulated bird’s-eye plot, specified as a birdsEyePlot handle that you can update
with various plotters.

 coverageAreaPlotter

4-99

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'FaceColor','black'.

DisplayName — Plot name to display in legend
character vector | string scalar

Plot name to display in legend, specified as the comma-separated pair consisting of
'DisplayName' and a character vector or string scalar. If you do not specify a name, no
entry is displayed.

FaceColor — Coverage area color
'black' (default) | character vector | string scalar | [RGB] vector

Coverage area color, specified as the comma-separated pair consisting of 'FaceColor'
and a character vector, string scalar, or an [RGB] vector.

EdgeColor — Coverage area border color
'black' (default) | character vector | string scalar | [RGB] vector

Coverage area border color, specified as the comma-separated pair consisting of
'EdgeColor' and a character vector, string scalar, or an [RGB] vector.

FaceAlpha — Transparency of coverage area
1 (default) | scalar in the range [0,1]

Transparency of coverage area, specified as the comma-separated pair consisting of
'FaceAlpha' and a scalar in the range [0,1]. A value of 0 makes the coverage area fully
transparent, and a value of 1 makes it fully opaque.

Tag — Tag to identify plot of coverage area
'PlotterN' (default) | character vector | string scalar

Tag used to identify the plot of the coverage area, specified as the comma-separated pair
consisting of 'Tag' and a character vector or string scalar. The default 'Tag' used
is,'PlotterN', where N is an integer.

4 Objects in Automated Driving System Toolbox

4-100

Output Arguments
caPlotter — Bird’s-eye plot of coverage area
plotter object

Bird’s-eye plot of coverage area, returned as a plotter object. To plot the coverage area,
specify caPlotter as an input to plotCoverageArea.

See Also
Functions
birdsEyePlot | plotCoverageArea

Introduced in R2017a

 coverageAreaPlotter

4-101

detectionPlotter
Create bird’s-eye-view detection plotter

Syntax
detPlotter = detectionPlotter(bep)
detPlotter = detectionPlotter(bep,Name,Value)

Description
detPlotter = detectionPlotter(bep) returns a detection plotter for displaying
detections in a bird’s-eye plot.

detPlotter = detectionPlotter(bep,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

Examples

Create Bird's-Eye Plot with Labeled Detections

Create a bird's-eye plot and radar plotter.

bep = birdsEyePlot('XLim',[0,90],'YLim',[-35,35]);
radarPlotter = detectionPlotter(bep,'DisplayName','Radar detections');

4 Objects in Automated Driving System Toolbox

4-102

Label the detections, positioned in meters, with corresponding velocities.

positions = [30,5;30,-10;30,15];
velocities = [-10,0;-10,3;-10,-4];
labels = {'R1','R2','R3'};
plotDetection(radarPlotter,positions,velocities,labels);

 detectionPlotter

4-103

Input Arguments
bep — Unpopulated bird’s-eye plot
birdsEyePlot handle

Unpopulated bird’s-eye plot, specified as a birdsEyePlot handle that you can update
with various plotters.

4 Objects in Automated Driving System Toolbox

4-104

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Marker','x'.

DisplayName — Plot name to display in legend
character vector | string scalar

Plot name to display in legend, specified as the comma-separated pair consisting of
'DisplayName' and a character vector or string scalar. If you do not specify a name, no
entry is displayed.

Marker — Marker symbol
'o' (default) | character

Marker symbol, specified as the comma-separated pair consisting of 'Marker' and one of
these symbols.

Value Description
'.' Point
'x' Cross
'+' Plus sign
'*' Asterisk
'o' Circle (default)
's' Square
'd' Diamond
'h' Six-pointed star (hexagram)
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'<' Left-pointing triangle
'>' Right-pointing triangle

 detectionPlotter

4-105

MarkerSize — Size of marker
positive integer

Size of marker, specified as the comma-separated pair consisting of 'MarkerSize' and a
positive integer.

MarkerEdgeColor — Marker outline color
'black' (default) | character vector | string scalar | [RGB] vector

Marker outline color, specified as the comma-separated pair consisting of
'MarkerEdgeColor' and a character vector, string scalar, or an [RGB] vector.

MarkerFaceColor — Marker fill color
character vector | string scalar | [RGB] vector | 'none'

Marker outline color, specified as the comma-separated pair consisting of
''MarkerFaceColor' and a character vector, string scalar, [RGB] vector, or 'none'.

FontSize — Font size for labeling detections
10 points (default) | positive integer

Font size for labeling detections, specified as the comma-separated pair consisting of
'FontSize' and a positive integer that represents font points.

LabelOffset — Gap between label and positional point
[0 0] (default) | two-element row vector

Gap between label and positional point, specified as the comma-separated pair consisting
of 'LabelOffset' and a two-element row vector. You must specify the [x y] offset in
meters.

VelocityScaling — Scale factor for magnitude length of velocity vectors
1 (default) | positive scalar

Scale factor for magnitude length of velocity vectors, specified as the comma-separated
pair consisting of 'VelocityScaling' and a positive scalar. The plot renders the
magnitude vector value as (magnitude of velocity) × VelocityScaling.

Tag — Tag to identify plot of coverage area
'PlotterN' (default) | character vector | string scalar

4 Objects in Automated Driving System Toolbox

4-106

Tag to identify plot of coverage area, specified as the comma-separated pair consisting of
'Tag' and a character vector or string scalar. The default 'Tag' used is,'PlotterN',
where N is an integer.

Output Arguments
detPlotter — Detection plotter to use for bird’s-eye plot
plotter object

Detection plotter to use for bird’s-eye plot, returned as a plotter object.

See Also
Functions
birdsEyePlot

Introduced in R2017a

 detectionPlotter

4-107

findPlotter
Find plotters associated with bird’s-eye plot

Syntax
p = findPlotter(bep)
p = findPlotter(bep,Name,Value)

Description
p = findPlotter(bep) returns an array of plotters associated with a bird’s-eye plot.

p = findPlotter(bep,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

Examples

Create Bird's-Eye Plot with Coverage Area and Detection Plotters

Create a bird's-eye plot with the plotters and set selected properties.

bep = birdsEyePlot('XLim',[0 90],'YLim',[-35 35]);
coverageAreaPlotter(bep,'DisplayName','Radar coverage');
detectionPlotter(bep,'DisplayName','Radar detections');

4 Objects in Automated Driving System Toolbox

4-108

Use findPlotter to locate their plotters by display names.

caPlotter = findPlotter(bep,'DisplayName','Radar coverage');
radarPlotter = findPlotter(bep,'DisplayName','Radar detections');

Plot the coverage area and detected objects.

plotCoverageArea(caPlotter, [1 0],30,0,35);
plotDetection(radarPlotter, [30,5;30,-10;30,15]);

 findPlotter

4-109

Clear data from the plot.

clearPlotterData(bep);

4 Objects in Automated Driving System Toolbox

4-110

Input Arguments
bep — Unpopulated bird’s-eye plot
birdsEyePlot handle

Unpopulated bird’s-eye plot, specified as a birdsEyePlot handle that you can update
with various plotters.

 findPlotter

4-111

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'DisplayName','MyBirdsEyePlots'.

DisplayName — Plot name to display in legend
character vector | string scalar

Plot name to display in legend, specified as the comma-separated pair consisting of
'DisplayName' and a character vector or string scalar. If you do not specify a name, no
entry is displayed.

Tag — Tag to identify plot of coverage area
'PlotterN' (default) | character vector | string scalar

Tag used to identify the plot of the coverage area, specified as the comma-separated pair
consisting of 'Tag' and a character vector or string scalar. The default 'Tag' used is
'PlotterN', where N is an integer.

Output Arguments
p — Plotters associated with bird’s-eye plot
array of plotters

Plotters associated with a bird’s-eye plot, returned as an array of plotters.

See Also
Functions
birdsEyePlot

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-112

laneBoundaryPlotter
Create bird’s-eye-view lane boundary plotter

Syntax
lbPlotter = laneBoundaryPlotter(bep)
lbPlotter = laneBoundaryPlotter(bep,Name,Value)

Description
lbPlotter = laneBoundaryPlotter(bep) returns a lane boundary plotter for
displaying lane boundaries in a bird’s-eye plot.

lbPlotter = laneBoundaryPlotter(bep,Name,Value) uses additional options
specified by one or more Name,Value pair arguments.

Examples

Create Bird's-Eye Plot Containing Two Lane Boundaries

Create the left-lane and right-lane boundaries.

lb = parabolicLaneBoundary([-0.001,0.01, 0.5]);
rb = parabolicLaneBoundary([-0.001,0.01,-0.5]);

Create the bird's-eye plot.

bep = birdsEyePlot('XLimits',[0 30],'YLimits',[-5 5]);

 laneBoundaryPlotter

4-113

Create the lane boundary plotter.

lbPlotter = laneBoundaryPlotter(bep,'DisplayName','Lane boundaries');

4 Objects in Automated Driving System Toolbox

4-114

Plot the lane boundaries.

plotLaneBoundary(lbPlotter,[lb,rb]);

 laneBoundaryPlotter

4-115

Input Arguments
bep — Unpopulated bird’s-eye plot
birdsEyePlot handle

Unpopulated bird’s-eye plot, specified as a birdsEyePlot handle that you can update
with various plotters.

4 Objects in Automated Driving System Toolbox

4-116

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Color','black'.

DisplayName — Plot name to display in legend
character vector | string scalar

Plot name to display in legend, specified as the comma-separated pair consisting of
'DisplayName' and a character vector or string scalar. If you do not specify a name, no
entry is displayed.

Color — Boundary color
'black' (default) | character vector | string scalar | [RGB] vector

Boundary color, specified as the comma-separated pair consisting of 'FaceColor' and a
character vector, string scalar, or an [RGB] vector.

LineStyle — Boundary line style
'-' (default) | '--' | ':' | '-.'

Boundary line style, specified as the comma-separated pair consisting of 'LineStyle'
and one of these styles.

Marker Symbol Type
'-' Solid line (default)
'--' Dashed line
':' Dotted line
'-.' Dashed-dotted line

Tag — Tag to identify plot of coverage area
'PlotterN' (default) | character vector | string scalar

Tag used to identify the plot of the coverage area, specified as the comma-separated pair
consisting of 'Tag' and a character vector or string scalar. The default 'Tag' used
is,'PlotterN', where N is an integer.

 laneBoundaryPlotter

4-117

Output Arguments
lbPlotter — Lane boundary plotter
plotter object

Lane boundary plotter to use for bird’s-eye plot, returned as a plotter object.

See Also
Functions
birdsEyePlot

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-118

laneMarkingPlotter
Bird’s-eye plot lane marking plotter

Syntax
lmPlotter = laneMarkingPlotter(bep)
lmPlotter = laneMarkingPlotter(bep,Name,Value)

Description
lmPlotter = laneMarkingPlotter(bep) returns a lane boundary plotter for
displaying lane markings in a bird’s-eye plot.

lmPlotter = laneMarkingPlotter(bep,Name,Value) also enables you to specify
additional options using one or more Name,Value pair arguments. Name can also be a
property name and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Examples

Generate Object and Lane Boundary Detections

Create a driving scenario containing an ego car and a target vehicle traveling along a
three-lane road. Detect the lane boundaries using a vision sensor.

sc = drivingScenario;

Create a three-lane road using lane specifications.

roadCenters = [0 0 0; 60 0 0; 120 30 0];
lspc = lanespec(3);
road(sc,roadCenters,'Lanes',lspc);

The ego car follows the center lane at 30 m/s.

 laneMarkingPlotter

4-119

egocar = vehicle(sc);
egopath = [1.5 0 0; 60 0 0; 111 25 0];
egospeed = 30;
trajectory(egocar,egopath,egospeed);

The target vehicle travels ahead at 40 m/s and changes lanes close to the ego vehicle.

targetcar = vehicle(sc,'ClassID',2);
targetpath = [8 2; 60 -3.2; 120 33];
targetspeed = 40;
trajectory(targetcar,targetpath,targetspeed);

Display a chase plot showing a 3-D view from behind the ego vehicle.

chasePlot(egocar)

4 Objects in Automated Driving System Toolbox

4-120

Create a vision detection generator that detects lanes and objects. The pitch of the sensor
points one degree downward.

visionSensor = visionDetectionGenerator('Pitch',1.0);
visionSensor.DetectorOutput = 'Lanes and objects';
visionSensor.ActorProfiles = actorProfiles(sc);

Run the simulation.

• Create a bird's eye plot and the associated plotters.
• Plot the sensor coverage area.
• Display lane markings.
• Obtain ground truth poses of targets on the road.
• Obtain ideal lane boundary points up to 60 m ahead.
• Generate detections from the ideal target poses and lane boundaries.
• Plot outline of target.
• Plot object detections when the object detection is valid.
• Plot lane boundary when the lane detection is valid.

bep = birdsEyePlot('XLim', [0 60], 'YLim', [-35 35]);
caPlotter = coverageAreaPlotter(bep, 'DisplayName','Coverage area', ...
 'FaceColor','blue');
detPlotter = detectionPlotter(bep,'DisplayName','Object detections');
lmPlotter = laneMarkingPlotter(bep,'DisplayName','Lane markings');
lbPlotter = laneBoundaryPlotter(bep,'DisplayName', ...
 'Lane boundary detections','Color','red');
olPlotter = outlinePlotter(bep);
plotCoverageArea(caPlotter,visionSensor.SensorLocation,...
 visionSensor.MaxRange,visionSensor.Yaw, ...
 visionSensor.FieldOfView(1));
while advance(sc)
 [lmv,lmf] = laneMarkingVertices(egocar);
 plotLaneMarking(lmPlotter,lmv,lmf)
 tgtpose = targetPoses(egocar);
 lookaheadDistance = 0:0.5:60;
 lb = laneBoundaries(egocar,'XDistance',lookaheadDistance,'LocationType','inner');
 [obdets,nobdets,obValid,lb_dets,nlb_dets,lbValid] = ...
 visionSensor(tgtpose,lb,sc.SimulationTime);
 [objposition,objyaw,objlength,objwidth,objriginOffset,color] = targetOutlines(egocar);
 plotOutline(olPlotter,objposition,objyaw,objlength,objwidth, ...
 'OriginOffset',objriginOffset,'Color', color)

 laneMarkingPlotter

4-121

 if obValid
 detPos = cellfun(@(d)d.Measurement(1:2),obdets,'UniformOutput',false);
 detPos = vertcat(zeros(0,2),cell2mat(detPos')');
 plotDetection(detPlotter,detPos)
 end
 if lbValid
 plotLaneBoundary(lbPlotter,vertcat(lb_dets.LaneBoundaries))
 end
end

4 Objects in Automated Driving System Toolbox

4-122

Input Arguments
bep — Empty bird’s-eye plot
birdsEyePlot object

Empty bird’s-eye plot, specified as a birdsEyePlot object to which you can add different
plotters.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 laneMarkingPlotter

4-123

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Color','black'

DisplayName — Name to show in legend
character vector | string scalar

Name to show in legend, specified as the comma-separated pair consisting of
'DisplayName' and a character vector or string scalar. If you do not specify a name, the
legend is empty.

FaceColor — Face color of lane marking patches
'black' (default) | MATLAB color string | [r g b] vector

Face color of lane marking patches, specified as the comma-separated pair consisting of
'FaceColor' and a MATLAB color string or an [r g b] vector.

Tag — Plotter identification tag
'PlotterN' (default) | character vector | string scalar

Tag used to identify the plot of the coverage area, specified as the comma-separated pair
consisting of 'Tag' and a character vector or string scalar. Tags provide a way to identify
plotter objects, for example, when searching for plotters using findPlotter.

By default, when no tags are assigned, 'Tag' is constructed using 'PlotterN'. N is an
integer assigned sequentially as each plotter is created.

Output Arguments
lmPlotter — Lane marking plotter
laneMarkingPlotter object

Lane marking plotter to add to a bird’s-eye plot, returned as a laneMarkingPlotter
object.

See Also
birdsEyePlot | plotLaneMarking

4 Objects in Automated Driving System Toolbox

4-124

Introduced in R2018a

 laneMarkingPlotter

4-125

pathPlotter
Create bird’s-eye-view path plotter

Syntax
pPlotter = pathPlotter(bep)
pPlotter = pathPlotter(bep,Name,Value)

Description
pPlotter = pathPlotter(bep) returns a path plotter for displaying paths in a bird’s-
eye plot.

pPlotter = pathPlotter(bep,Name,Value) uses additional options specified by one
or more Name,Value pair arguments.

Examples

Plot Path of Ego Vehicle

Create a 3-meter-wide lane.

lb = parabolicLaneBoundary([-0.001,0.01,1.5]);
rb = parabolicLaneBoundary([-0.001,0.01,-1.5]);

Compute the model manually up to 30 meters ahead in the lane.

xWorld = (0:30)';
yLeft = computeBoundaryModel(lb,xWorld);
yRight = computeBoundaryModel(rb,xWorld);

Create a bird's-eye plot and plot the lane information.

4 Objects in Automated Driving System Toolbox

4-126

bep = birdsEyePlot('XLimits',[0 30],'YLimits',[-5 5]);
lanePlotter = laneBoundaryPlotter(bep,'DisplayName','Lane boundaries');
plotLaneBoundary(lanePlotter,{[xWorld,yLeft],[xWorld,yRight]});

Plot the path of an ego vehicle that travels through the center of the lane.

yCenter = (yLeft + yRight)/2;
egoPathPlotter = pathPlotter(bep,'DisplayName','Ego path');
plotPath(egoPathPlotter,{[xWorld,yCenter]});

 pathPlotter

4-127

Input Arguments
bep — Unpopulated bird’s-eye plot
birdsEyePlot handle

Unpopulated bird’s-eye plot, specified as a birdsEyePlot handle that you can update
with various plotters.

4 Objects in Automated Driving System Toolbox

4-128

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Color','black'.

DisplayName — Plot name to display in legend
character vector | string scalar

Plot name to display in legend, specified as the comma-separated pair consisting of
'DisplayName' and a character vector or string scalar. If you do not specify a name, no
entry is displayed.

Color — Boundary color
'black' (default) | character vector | string scalar | [RGB] vector

Boundary color, specified as the comma-separated pair consisting of 'FaceColor' and a
character vector, string scalar, or an [RGB] vector.

LineStyle — Boundary line style
':' (default) | '-' | '--' | '-.'

Boundary line style, specified as the comma-separated pair consisting of 'LineStyle'
and one of these styles.

Marker Symbol Type
'-' Solid line
'--' Dashed line
':' Dotted line (default)
'-.' Dashed-dotted line

Tag — Tag to identify plot of coverage area
'PlotterN' (default) | character vector | string scalar

Tag used to identify the plot of the coverage area, specified as the comma-separated pair
consisting of 'Tag' and a character vector or string scalar. The default 'Tag' used
is,'PlotterN', where N is an integer.

 pathPlotter

4-129

Output Arguments
pPlotter — Path plotter
plotter object

Path plotter to use for bird's-eye plot, returned as a plotter object.

See Also
Functions
birdsEyePlot

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-130

trackPlotter
Create bird’s-eye-view track plotter

Syntax
tPlotter = trackPlotter(bep)
tPlotter = trackPlotter(bep,Name,Value)

Description
tPlotter = trackPlotter(bep) returns a track plotter for displaying tracks in a
bird’s-eye plot.

tPlotter = trackPlotter(bep,Name,Value) uses additional options specified by
one or more Name,Value pair arguments.

Examples

Create Bird's-Eye Plot with Labeled Tracks

Create a bird's-eye plot and a track plotter. Set the plotter to display up to seven history
values for each track.

bep = birdsEyePlot('XLim',[0 90],'YLim',[-35 35]);
tPlotter = trackPlotter(bep,'DisplayName','Tracks','HistoryDepth',7);

 trackPlotter

4-131

Set the positions, velocities, and labels of each track.

positions = [30, 5; 30, 5; 30, 5];
velocities = [3, 0; 3, 2; 3, -3];
labels = {'T1','T2','T3'};

Update the tracks for 10 trials, showing the seven history values specified previously.

for i=1:10
 plotTrack(tPlotter,positions,velocities,labels);
 positions = positions + velocities;
end

4 Objects in Automated Driving System Toolbox

4-132

Input Arguments
bep — Unpopulated bird’s-eye plot
birdsEyePlot handle

Unpopulated bird’s-eye plot, specified as a birdsEyePlot handle that you can update
with various plotters.

 trackPlotter

4-133

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Marker','s'.

DisplayName — Plot name to display in legend
character vector | string scalar

Plot name to display in legend, specified as the comma-separated pair consisting of
'DisplayName' and a character vector or string scalar. If you do not specify a name, no
entry is displayed.

HistoryDepth — Number of previous track updates to display
0 | value in the range [0,100]

Number of previous track updates to display, specified as the comma-separated pair
consisting of 'HistoryDepth' and a value in the range [0,100]. When you set this value to
0, no previous updates are displayed.

Marker — Marker symbol
'o' (default) | character

Marker symbol, specified as the comma-separated pair consisting of 'Marker' and one of
these symbols.

Value Description
'.' Point
'x' Cross
'+' Plus sign
'*' Asterisk
'o' Circle (default)
's' Square
'd' Diamond
'h' Six-pointed star (hexagram)

4 Objects in Automated Driving System Toolbox

4-134

Value Description
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'<' Left-pointing triangle
'>' Right-pointing triangle

MarkerSize — Size of marker
positive integer

Size of marker, specified as the comma-separated pair consisting of 'MarkerSize' and a
positive integer.

MarkerEdgeColor — Marker outline color
'black' (default) | character vector | string scalar | [RGB] vector

Marker outline color, specified as the comma-separated pair consisting of
'MarkerEdgeColor' and a character vector, string scalar, or an [RGB] vector.

MarkerFaceColor — Marker fill color
character vector | string scalar | [RGB] vector | 'none'

Marker outline color, specified as the comma-separated pair consisting of
''MarkerFaceColor' and a character vector, string scalar, [RGB] vector, or 'none'.

FontSize — Font size for labeling detections
10 points (default) | positive integer

Font size for labeling detections, specified as the comma-separated pair consisting of
'FontSize' and a positive integer that represents font points.

LabelOffset — Gap between label and positional point
[0 0] (default) | two-element row vector

Gap between label and positional point, specified as the comma-separated pair consisting
of 'LabelOffset' and a two-element row vector. You must specify the [x y] offset in
meters.

VelocityScaling — Scale factor for magnitude length of velocity vectors
1 (default) | positive scalar

 trackPlotter

4-135

Scale factor for magnitude length of velocity vectors, specified as the comma-separated
pair consisting of 'VelocityScaling' and a positive scalar. The plot renders the
magnitude vector value as (magnitude of velocity) × VelocityScaling.

Tag — Tag to identify plot of coverage area
'PlotterN' (default) | character vector | string scalar

Tag to identify plot of coverage area, specified as the comma-separated pair consisting of
'Tag' and a character vector or string scalar. The default 'Tag' used is,'PlotterN',
where N is an integer.

Output Arguments
tPlotter — Track plotter
plotter object

Track plotter to use for bird’s-eye plot, returned as a plotter object.

See Also
Functions
birdsEyePlot

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-136

birdsEyeView
Create bird's-eye view using inverse perspective mapping

Description
Use the birdsEyeView object to create a bird's-eye view of a 2-D scene using inverse
perspective mapping. To transform an image into a bird's-eye view, pass a birdsEyeView
object and that image to the transformImage function. To convert the bird’s-eye-view
image coordinates to or from vehicle coordinates, use the imageToVehicle and
vehicleToImage functions. All of these functions assume that the input image does not
have lens distortion. To remove lens distortion, use the undistortImage function.

Creation

Syntax
birdsEye = birdsEyeView(sensor,outView,outImageSize)

Description
birdsEye = birdsEyeView(sensor,outView,outImageSize) creates a
birdsEyeView object for transforming an image to a bird’s-eye-view.

• sensor is a monoCamera object that defines the configuration of the camera sensor.
This input sets the Sensor property.

• outView defines the portion of the camera view, in vehicle coordinates, that is
transformed into a bird's-eye view. This input sets the OutputView property.

• outImageSize defines the size, in pixels, of the output bird's-eye-view image. This
input sets the ImageSize property.

 birdsEyeView

4-137

Properties
Sensor — Camera sensor configuration
monoCamera object

Camera sensor configuration, specified as a monoCamera object. The object contains the
intrinsic camera parameters, the mounting height, and the camera mounting angles. This
configuration defines the vehicle coordinate system of the birdsEyeView object. For
more details, see “Vehicle Coordinate System” on page 4-146.

OutputView — Coordinates of region to transform
four-element vector of form [xmin xmax ymin ymax]

Coordinates of the region to transform into a bird's-eye-view image, specified as a four-
element vector of the form [xmin xmax ymin ymax]. The units are in world coordinates,
such as meters or feet, as determined by the Sensor property. The four coordinates
define the output space in the vehicle coordinate system (XV,YV).

You can set this property when you create the object. After you create the object, this
property is read-only.

4 Objects in Automated Driving System Toolbox

4-138

ImageSize — Size of output bird's-eye-view images
two-element vector

Size of output bird's-eye-view images, in pixels, specified as a two-element vector of the
form [m n], where m and n specify the number of rows and columns of pixels for the
output image, respectively. If you specify a value for one dimension, you can set the other
dimension to NaN and birdsEyeView calculates this value automatically. Setting one
dimension to NaN maintains the same pixel to world-unit ratio along the XV-axis and YV-
axis.

You can set this property when you create the object. After you create the object, this
property is read-only.

Object Functions
transformImage Transform image to bird's-eye view
imageToVehicle Convert bird's-eye-view image coordinates to vehicle coordinates
vehicleToImage Convert vehicle coordinates to bird's-eye-view image coordinates

Examples

Transform Road Image to Bird's-Eye-View Image

Create a bird's-eye-view image from an image obtained by a front-facing camera mounted
on a vehicle. Display points within the bird's-eye view using the vehicle and image
coordinate systems.

Define the camera intrinsics and create an object containing these intrinsics.

focalLength = [309.4362 344.2161];
principalPoint = [318.9034 257.5352];
imageSize = [480 640];

camIntrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

Set the height of the camera to be about 2 meters above the ground. Set the pitch of the
camera to 14 degrees toward the ground.

height = 2.1798;
pitch = 14;

 birdsEyeView

4-139

Create an object containing the camera configuration.

sensor = monoCamera(camIntrinsics,height,'Pitch',pitch);

Define the area in front of the camera that you want to transform into a bird's-eye view.
Set an area from 3 to 30 meters in front of the camera, with 6 meters to either side of the
camera.

distAhead = 30;
spaceToOneSide = 6;
bottomOffset = 3;

outView = [bottomOffset,distAhead,-spaceToOneSide,spaceToOneSide];

Set the output image width to 250 pixels. Compute the output length automatically from
the width by setting the length to NaN.

outImageSize = [NaN,250];

Create an object for performing bird's-eye-view transforms, using the previously defined
parameters.

birdsEye = birdsEyeView(sensor,outView,outImageSize);

Load an image that was captured by the sensor.

I = imread('road.png');
figure
imshow(I)
title('Original Image')

4 Objects in Automated Driving System Toolbox

4-140

Transform the input image into a bird's-eye-view image.

BEV = transformImage(birdsEye,I);

In the bird's-eye-view image, place a 20-meter marker directly in front of the sensor. Use
the vehicleToImage function to specify the location of the marker in vehicle
coordinates. Display the marker on the bird's-eye-view image.

imagePoint = vehicleToImage(birdsEye,[20 0]);
annotatedBEV = insertMarker(BEV,imagePoint);
annotatedBEV = insertText(annotatedBEV,imagePoint + 5,'20 meters');

figure

 birdsEyeView

4-141

imshow(annotatedBEV)
title('Bird''s-Eye-View Image: vehicleToImage')

4 Objects in Automated Driving System Toolbox

4-142

 birdsEyeView

4-143

Define a location in the original bird's-eye-view image, this time in image coordinates.
Use the imageToVehicle function to convert the image coordinates to vehicle
coordinates. Display the distance between the marker and the front of the vehicle.

imagePoint2 = [120 400];
annotatedBEV = insertMarker(BEV,imagePoint2);

vehiclePoint = imageToVehicle(birdsEye,imagePoint2);
xAhead = vehiclePoint(1);
displayText = sprintf('%.2f meters',xAhead);
annotatedBEV = insertText(annotatedBEV,imagePoint2 + 5,displayText);

figure
imshow(annotatedBEV)
title('Bird''s-Eye-View Image: imageToVehicle')

4 Objects in Automated Driving System Toolbox

4-144

 birdsEyeView

4-145

Definitions

Vehicle Coordinate System
In the vehicle coordinate system (XV, YV, ZV) defined by the input monoCamera object:

• The XV-axis points forward from the vehicle.
• The YV-axis points to the left, as viewed when facing forward.
• The ZV-axis points up from the ground to maintain the right-handed coordinate system.

The default origin of this coordinate system is on the road surface, directly below the
camera center. The focal point of the camera defines this center point.

4 Objects in Automated Driving System Toolbox

4-146

To change the placement of the origin within the vehicle coordinate system, update the
SensorLocation property of the input monoCamera object.

For more details about the vehicle coordinate system, see “Coordinate Systems in
Automated Driving System Toolbox”.

 birdsEyeView

4-147

See Also
Functions
monoCamera

Topics
“Coordinate Systems in Automated Driving System Toolbox”

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-148

vehicleToImage
Convert vehicle coordinates to bird's-eye-view image coordinates

Syntax
imagePoints = vehicleToImage(birdsEye,vehiclePoints)

Description
imagePoints = vehicleToImage(birdsEye,vehiclePoints) converts vehicle
coordinates to [x y] bird’s-eye-view image coordinates.

Examples

Transform Road Image to Bird's-Eye-View Image

Create a bird's-eye-view image from an image obtained by a front-facing camera mounted
on a vehicle. Display points within the bird's-eye view using the vehicle and image
coordinate systems.

Define the camera intrinsics and create an object containing these intrinsics.

focalLength = [309.4362 344.2161];
principalPoint = [318.9034 257.5352];
imageSize = [480 640];

camIntrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

Set the height of the camera to be about 2 meters above the ground. Set the pitch of the
camera to 14 degrees toward the ground.

height = 2.1798;
pitch = 14;

Create an object containing the camera configuration.

 vehicleToImage

4-149

sensor = monoCamera(camIntrinsics,height,'Pitch',pitch);

Define the area in front of the camera that you want to transform into a bird's-eye view.
Set an area from 3 to 30 meters in front of the camera, with 6 meters to either side of the
camera.

distAhead = 30;
spaceToOneSide = 6;
bottomOffset = 3;

outView = [bottomOffset,distAhead,-spaceToOneSide,spaceToOneSide];

Set the output image width to 250 pixels. Compute the output length automatically from
the width by setting the length to NaN.

outImageSize = [NaN,250];

Create an object for performing bird's-eye-view transforms, using the previously defined
parameters.

birdsEye = birdsEyeView(sensor,outView,outImageSize);

Load an image that was captured by the sensor.

I = imread('road.png');
figure
imshow(I)
title('Original Image')

4 Objects in Automated Driving System Toolbox

4-150

Transform the input image into a bird's-eye-view image.

BEV = transformImage(birdsEye,I);

In the bird's-eye-view image, place a 20-meter marker directly in front of the sensor. Use
the vehicleToImage function to specify the location of the marker in vehicle
coordinates. Display the marker on the bird's-eye-view image.

imagePoint = vehicleToImage(birdsEye,[20 0]);
annotatedBEV = insertMarker(BEV,imagePoint);
annotatedBEV = insertText(annotatedBEV,imagePoint + 5,'20 meters');

figure

 vehicleToImage

4-151

imshow(annotatedBEV)
title('Bird''s-Eye-View Image: vehicleToImage')

4 Objects in Automated Driving System Toolbox

4-152

 vehicleToImage

4-153

Define a location in the original bird's-eye-view image, this time in image coordinates.
Use the imageToVehicle function to convert the image coordinates to vehicle
coordinates. Display the distance between the marker and the front of the vehicle.

imagePoint2 = [120 400];
annotatedBEV = insertMarker(BEV,imagePoint2);

vehiclePoint = imageToVehicle(birdsEye,imagePoint2);
xAhead = vehiclePoint(1);
displayText = sprintf('%.2f meters',xAhead);
annotatedBEV = insertText(annotatedBEV,imagePoint2 + 5,displayText);

figure
imshow(annotatedBEV)
title('Bird''s-Eye-View Image: imageToVehicle')

4 Objects in Automated Driving System Toolbox

4-154

 vehicleToImage

4-155

Input Arguments
birdsEye — Object for transforming image to bird's-eye view
birdsEyeView object

Object for transforming image to bird's-eye view, specified as a birdsEyeView object.

vehiclePoints — Vehicle points
M-by-2 matrix

Vehicle points, specified as an M-by-2 matrix containing M number of [x y] vehicle
coordinates.

Output Arguments
imagePoints — Image points
M-by-2 matrix

Image points, returned as an M-by-2 matrix containing M number of [x y] image
coordinates.

See Also
Objects
birdsEyeView

Functions
imageToVehicle

Topics
“Coordinate Systems in Automated Driving System Toolbox”

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-156

imageToVehicle
Convert bird's-eye-view image coordinates to vehicle coordinates

Syntax
vehiclePoints = imageToVehicle(birdsEye,imagePoints)

Description
vehiclePoints = imageToVehicle(birdsEye,imagePoints) converts bird’s-eye-
view image coordinates to [x y] vehicle coordinates.

Examples

Transform Road Image to Bird's-Eye-View Image

Create a bird's-eye-view image from an image obtained by a front-facing camera mounted
on a vehicle. Display points within the bird's-eye view using the vehicle and image
coordinate systems.

Define the camera intrinsics and create an object containing these intrinsics.

focalLength = [309.4362 344.2161];
principalPoint = [318.9034 257.5352];
imageSize = [480 640];

camIntrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

Set the height of the camera to be about 2 meters above the ground. Set the pitch of the
camera to 14 degrees toward the ground.

height = 2.1798;
pitch = 14;

Create an object containing the camera configuration.

 imageToVehicle

4-157

sensor = monoCamera(camIntrinsics,height,'Pitch',pitch);

Define the area in front of the camera that you want to transform into a bird's-eye view.
Set an area from 3 to 30 meters in front of the camera, with 6 meters to either side of the
camera.

distAhead = 30;
spaceToOneSide = 6;
bottomOffset = 3;

outView = [bottomOffset,distAhead,-spaceToOneSide,spaceToOneSide];

Set the output image width to 250 pixels. Compute the output length automatically from
the width by setting the length to NaN.

outImageSize = [NaN,250];

Create an object for performing bird's-eye-view transforms, using the previously defined
parameters.

birdsEye = birdsEyeView(sensor,outView,outImageSize);

Load an image that was captured by the sensor.

I = imread('road.png');
figure
imshow(I)
title('Original Image')

4 Objects in Automated Driving System Toolbox

4-158

Transform the input image into a bird's-eye-view image.

BEV = transformImage(birdsEye,I);

In the bird's-eye-view image, place a 20-meter marker directly in front of the sensor. Use
the vehicleToImage function to specify the location of the marker in vehicle
coordinates. Display the marker on the bird's-eye-view image.

imagePoint = vehicleToImage(birdsEye,[20 0]);
annotatedBEV = insertMarker(BEV,imagePoint);
annotatedBEV = insertText(annotatedBEV,imagePoint + 5,'20 meters');

figure

 imageToVehicle

4-159

imshow(annotatedBEV)
title('Bird''s-Eye-View Image: vehicleToImage')

4 Objects in Automated Driving System Toolbox

4-160

 imageToVehicle

4-161

Define a location in the original bird's-eye-view image, this time in image coordinates.
Use the imageToVehicle function to convert the image coordinates to vehicle
coordinates. Display the distance between the marker and the front of the vehicle.

imagePoint2 = [120 400];
annotatedBEV = insertMarker(BEV,imagePoint2);

vehiclePoint = imageToVehicle(birdsEye,imagePoint2);
xAhead = vehiclePoint(1);
displayText = sprintf('%.2f meters',xAhead);
annotatedBEV = insertText(annotatedBEV,imagePoint2 + 5,displayText);

figure
imshow(annotatedBEV)
title('Bird''s-Eye-View Image: imageToVehicle')

4 Objects in Automated Driving System Toolbox

4-162

 imageToVehicle

4-163

Input Arguments
birdsEye — Object for transforming image to bird's-eye view
birdsEyeView object

Object for transforming image to bird's-eye view, specified as a birdsEyeView object.

imagePoints — Image points
M-by-2 matrix

Image points, specified as an M-by-2 matrix containing M number of [x y] image
coordinates.

Output Arguments
vehiclePoints — Vehicle points
M-by-2 matrix

Vehicle points, returned as an M-by-2 matrix containing M number of [x y] vehicle
coordinates.

See Also
Objects
birdsEyeView

Functions
vehicleToImage

Topics
“Coordinate Systems in Automated Driving System Toolbox”

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-164

transformImage
Transform image to bird's-eye view

Syntax
J = transformImage(birdsEye,I)

Description
J = transformImage(birdsEye,I) transforms the input image, I, to a bird’s-eye-
view image, J. The OutputView and ImageSize properties of the birdsEyeView
object, birdsEye, determine the portion of I to transform and the size of J, respectively.

Examples

Transform Road Image to Bird's-Eye-View Image

Create a bird's-eye-view image from an image obtained by a front-facing camera mounted
on a vehicle. Display points within the bird's-eye view using the vehicle and image
coordinate systems.

Define the camera intrinsics and create an object containing these intrinsics.

focalLength = [309.4362 344.2161];
principalPoint = [318.9034 257.5352];
imageSize = [480 640];

camIntrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

Set the height of the camera to be about 2 meters above the ground. Set the pitch of the
camera to 14 degrees toward the ground.

height = 2.1798;
pitch = 14;

 transformImage

4-165

Create an object containing the camera configuration.

sensor = monoCamera(camIntrinsics,height,'Pitch',pitch);

Define the area in front of the camera that you want to transform into a bird's-eye view.
Set an area from 3 to 30 meters in front of the camera, with 6 meters to either side of the
camera.

distAhead = 30;
spaceToOneSide = 6;
bottomOffset = 3;

outView = [bottomOffset,distAhead,-spaceToOneSide,spaceToOneSide];

Set the output image width to 250 pixels. Compute the output length automatically from
the width by setting the length to NaN.

outImageSize = [NaN,250];

Create an object for performing bird's-eye-view transforms, using the previously defined
parameters.

birdsEye = birdsEyeView(sensor,outView,outImageSize);

Load an image that was captured by the sensor.

I = imread('road.png');
figure
imshow(I)
title('Original Image')

4 Objects in Automated Driving System Toolbox

4-166

Transform the input image into a bird's-eye-view image.

BEV = transformImage(birdsEye,I);

In the bird's-eye-view image, place a 20-meter marker directly in front of the sensor. Use
the vehicleToImage function to specify the location of the marker in vehicle
coordinates. Display the marker on the bird's-eye-view image.

imagePoint = vehicleToImage(birdsEye,[20 0]);
annotatedBEV = insertMarker(BEV,imagePoint);
annotatedBEV = insertText(annotatedBEV,imagePoint + 5,'20 meters');

figure

 transformImage

4-167

imshow(annotatedBEV)
title('Bird''s-Eye-View Image: vehicleToImage')

4 Objects in Automated Driving System Toolbox

4-168

 transformImage

4-169

Define a location in the original bird's-eye-view image, this time in image coordinates.
Use the imageToVehicle function to convert the image coordinates to vehicle
coordinates. Display the distance between the marker and the front of the vehicle.

imagePoint2 = [120 400];
annotatedBEV = insertMarker(BEV,imagePoint2);

vehiclePoint = imageToVehicle(birdsEye,imagePoint2);
xAhead = vehiclePoint(1);
displayText = sprintf('%.2f meters',xAhead);
annotatedBEV = insertText(annotatedBEV,imagePoint2 + 5,displayText);

figure
imshow(annotatedBEV)
title('Bird''s-Eye-View Image: imageToVehicle')

4 Objects in Automated Driving System Toolbox

4-170

 transformImage

4-171

Input Arguments
birdsEye — Object for transforming image to bird's-eye view
birdsEyeView object

Object for transforming image to bird's-eye view, specified as a birdsEyeView object.

I — Input image
truecolor image | grayscale image

Input image, specified as a truecolor or grayscale image. The OutputView property of
birdsEye determines the portion of I to transform to a bird's-eye view.

I must not contain lens distortion. You can remove lens distortion by using the
undistortImage function. In high-end optics, you can ignore distortion.

Output Arguments
J — Bird’s-eye-view image
truecolor image | grayscale image

Bird’s-eye-view image, returned as a truecolor or grayscale image. The ImageSize
property of birdsEye determines the size of J.

See Also
Objects
birdsEyeView

Functions
imageToVehicle | vehicleToImage

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-172

trackingKF class

Linear Kalman filter

Description
The trackingKF class creates a discrete-time linear Kalman filter used for tracking
positions and velocities of objects which can be encountered in an automated driving
scenario, such as automobiles, pedestrians, bicycles, and stationary structures or
obstacles. A Kalman filter is a recursive algorithm for estimating the evolving state of a
process when measurements are made on the process. The filter is linear when the
evolution of the state follows a linear motion model and the measurements are linear
functions of the state. Both the process and the measurements can have additive noise.
The filter also allows for optional controls or forces to act on the vehicle. When the
process noise and measurement noise are Gaussian, the Kalman filter is the optimal
minimum mean squared error (MMSE) state estimator for linear processes.

You can use this object in two ways:

• The first way is to specify explicitly the motion model. Set the motion model property,
MotionModel, to Custom and then use the StateTransitionModel property to set
the state transition matrix.

• The second way is to set the MotionModel property to a predefined state transition
model:

Motion Model
'1D Constant Velocity'
'1D Constant Acceleration'
'2D Constant Velocity'
'2D Constant Acceleration'
'3D Constant Velocity'
'3D Constant Acceleration'

 trackingKF class

4-173

Construction
filter = trackingKF returns a linear Kalman filter object for a discrete-time, 2-D
constant-velocity moving object. The Kalman filter uses default values for the
StateTransitionModel, MeasurementModel, and ControlModel properties. The
MotionModel property is set to '2D Constant Velocity'.

filter = trackingKF(F,H) specifies the state transition model, F, and the
measurement model, H. The MotionModel property is set to 'Custom'.

filter = trackingKF(F,H,G) also specifies the control model, G. The MotionModel
property is set to 'Custom'.

filter = trackingKF('MotionModel',model) sets the motion model property,
MotionModel, to model.

filter = trackingKF(___ ,Name,Value) configures the properties of the Kalman
filter using one or more Name,Value pair arguments. Any unspecified properties take
default values.

Properties
State — Kalman filter state
0 (default) | real-valued scalar | real-valued M-element vector

Kalman filter state, specified as a real-valued M-element vector. M is the size of the state
vector. Typical state vector sizes are described in the MotionModel property. When the
initial state is specified as a scalar, the state is expanded into an M-element vector.

You can set the state to a scalar in these cases:

• When the MotionModel property is set to 'Custom', M is determined by the size of
the state transition model.

• When the MotionModel property is set to '2D Constant Velocity', '3D
Constant Velocity', '2D Constant Acceleration', or '3D Constant
Acceleration' you must first specify the state as an M-element vector. You can use
a scalar for all subsequent specifications of the state vector.

Example: [200;0.2;-40;-0.01]

4 Objects in Automated Driving System Toolbox

4-174

Data Types: double

StateCovariance — State estimation error covariance
1 (default) | positive scalar | positive-definite real-valued M-by-M matrix

State error covariance, specified as a positive scalar or a positive-definite real-valued M-
by-M matrix, where M is the size of the state. Specifying the value as a scalar creates a
multiple of the M-by-M identity matrix. This matrix represents the uncertainty in the
state.
Example: [20 0.1; 0.1 1]
Data Types: double

MotionModel — Kalman filter motion model
'Custom' (default) | '1D Constant Velocity' | '2D Constant Velocity' | '3D
Constant Velocity' | '1D Constant Acceleration' | '2D Constant
Acceleration' | '3D Constant Acceleration'

Kalman filter motion model, specified as 'Custom' or one of these predefined models. In
this case, the state vector and state transition matrix take the form specified in the table.

MotionModel Form of State Vector Form of State Transition
Model

'1D Constant
Velocity'

[x;vx] [1 dt; 0 1]

'2D Constant
Velocity'

[x;vx;y;vy] Block diagonal matrix with
the [1 dt; 0 1] block
repeated for the x and y
spatial dimensions

'3D Constant
Velocity'

[x;vx;y;vy;z;vz] Block diagonal matrix with
the [1 dt; 0 1] block
repeated for the x, y, and z
spatial dimensions.

'1D Constant
Acceleration'

[x;vx;ax] [1 dt 0.5*dt^2; 0 1
dt; 0 0 1]

 trackingKF class

4-175

MotionModel Form of State Vector Form of State Transition
Model

'2D Constant
Acceleration'

[x;vx;ax;y;vy;ay] Block diagonal matrix with
[1 dt 0.5*dt^2; 0 1
dt; 0 0 1] blocks
repeated for the x and y
spatial dimensions

'3D Constant
Acceleration'

[x;vx,ax;y;vy;ay;z;vz
;az]

Block diagonal matrix with
the [1 dt 0.5*dt^2; 0 1
dt; 0 0 1] block repeated
for the x, y, and z spatial
dimensions

When the ControlModel property is defined, every nonzero element of the state
transition model is replaced by dt.

When MotionModel is 'Custom', you must specify a state transition model matrix, a
measurement model matrix, and optionally, a control model matrix as input arguments to
the Kalman filter.
Data Types: char

StateTransitionModel — State transition model between time steps
[1 1 0 0; 0 1 0 0; 0 0 1 1; 0 0 0 1] (default) | real-valued M-by-M matrix

State transition model between time steps, specified as a real-valued M-by-M matrix. M is
the size of the state vector. In the absence of controls and noise, the state transition
model relates the state at any time step to the state at the previous step. The state
transition model is a function of the filter time step size.
Example: [1 0; 1 2]

Dependencies

To enable this property, set MotionModel to 'Custom'.
Data Types: double

ControlModel — Control model
[] (default) | M-by-L real-valued matrix

4 Objects in Automated Driving System Toolbox

4-176

Control model, specified as an M-by-L matrix. M is the dimension of the state vector and L
is the number of controls or forces. The control model adds the effect of controls on the
evolution of the state.
Example: [.01 0.2]
Data Types: double

ProcessNoise — Covariance of process noise
1 (default) | positive scalar | real-valued positive-definite M-by-M matrix

Covariance of process noise, specified as a positive scalar or an M-by-M matrix where M
is the dimension of the state. If you specify this property as a scalar, the filter uses the
value as a multiplier of the M-by-M identity matrix. Process noise expresses the
uncertainty in the dynamic model and is assumed to be zero-mean Gaussian white noise.
Example: [1.0 0.05; 0.05 2]
Data Types: double

MeasurementModel — Measurements model from state vector
[1 0 0 0; 0 0 1 0] (default) | real-valued N-by-M matrix

Measurement model, specified as a real-valued N-by-M matrix, where N is the size of the
measurement vector and M is the size of the state vector. The measurement model is a
linear matrix that determines predicted measurements from the predicted state.
Example: [1 0.5 0.01; 1.0 1 0]
Data Types: double

MeasurementNoise — Measurement noise covariance
1 (default) | positive scalar | positive-definite real-valued N-by-N matrix

Covariance of the measurement noise, specified as a positive scalar or a positive-definite,
real-valued N-by-N matrix, where N is the size of the measurement vector. If you specify
this property as a scalar, the filter uses the value as a multiplier of the N-by-N identity
matrix. Measurement noise represents the uncertainty of the measurement and is
assumed to be zero-mean Gaussian white noise.
Example: 0.2
Data Types: double

 trackingKF class

4-177

Methods
clone Create Linear Kalman filter object with identical property values
correct Correct Kalman state vector and state covariance matrix
distance Distance from measurements to predicted measurement
predict Predict linear Kalman filter state
initialize Initialize Kalman filter
likelihood Measurement likelihood
residual Measurement residual and residual covariance

Examples

Constant-Velocity Linear Kalman Filter

Create a linear Kalman filter that uses a 2D Constant Velocity motion model. Assume
that the measurement consists of the object's x-y location.

Specify the initial state estimate to have zero velocity.

x = 5.3;
y = 3.6;
initialState = [x;0;y;0];
KF = trackingKF('MotionModel','2D Constant Velocity','State',initialState);

Create the measured positions from a constant-velocity trajectory.

vx = 0.2;
vy = 0.1;
T = 0.5;
pos = [0:vx*T:2;5:vy*T:6]';

Predict and correct the state of the object.

for k = 1:size(pos,1)
 pstates(k,:) = predict(KF,T);
 cstates(k,:) = correct(KF,pos(k,:));
end

4 Objects in Automated Driving System Toolbox

4-178

Plot the tracks.

plot(pos(:,1),pos(:,2),'k.', pstates(:,1),pstates(:,3),'+', ...
 cstates(:,1),cstates(:,3),'o')
xlabel('x [m]')
ylabel('y [m]')
grid
xt = [x-2 pos(1,1)+0.1 pos(end,1)+0.1];
yt = [y pos(1,2) pos(end,2)];
text(xt,yt,{'First measurement','First position','Last position'})
legend('Object position', 'Predicted position', 'Corrected position')

 trackingKF class

4-179

Definitions

Filter Parameters
This table relates the filter model parameters to the object properties. M is the size of the
state vector and N is the size of the measurement vector. L is the size of the control
model.

Model Parameter Meaning Specified in
Property

Size

Fk State transition
model that specifies
a linear model of the
force-free equations
of motion of the
object. This model,
together with the
control model,
determines the state
at time k+1 as a
function of the state
at time k. The state
transition model
depends on the time
step of the filter.

StateTransitionM
odel

M-by-M

Hk Measurement model
that specifies how
the measurements
are linear functions
of the state.

MeasurementModel N-by-M

Gk Control model
describing the
controls or forces
acting on the object.

ControlModel M-by-L

xk Estimate of the state
of the object.

State M-

4 Objects in Automated Driving System Toolbox

4-180

Model Parameter Meaning Specified in
Property

Size

Pk Estimated covariance
matrix of the state.
The covariance
represents the
uncertainty in the
values of the state.

StateCovariance M-by-M

Qk Estimate of the
process noise
covariance matrix at
step k. Process noise
is a measure of the
uncertainty in your
dynamic model and
is assumed to be
zero-mean white
Gaussian noise.

ProcessNoise M-by-M

Rk Estimate of the
measurement noise
covariance at step k.
Measurement noise
represents the
uncertainty of the
measurement and is
assumed to be zero-
mean white Gaussian
noise.

MeasurementNoise N-by-N

Algorithms
The Kalman filter describes the motion of an object by estimating its state. The state
generally consists of object position and velocity and possibly its acceleration. The state
can span one, two, or three spatial dimensions. Most frequently, you use the Kalman filter
to model constant-velocity or constant-acceleration motion. A linear Kalman filter
assumes that the process obeys the following linear stochastic difference equation:

 trackingKF class

4-181

x F x G u vk k k k k k+
= + +

1

xk is the state at step k. Fk is the state transition model matrix. Gk is the control model
matrix. uk represents known generalized controls acting on the object. In addition to the
specified equations of motion, the motion may be affected by random noise perturbations,
vk. The state, the state transition matrix, and the controls together provide enough
information to determine the future motion of the object in the absence of noise.

In the Kalman filter, the measurements are also linear functions of the state,

z H x wk k k k= +

where Hk is the measurement model matrix. This model expresses the measurements as
functions of the state. A measurement can consist of an object position, position and
velocity, or its position, velocity, and acceleration, or some function of these quantities.
The measurements can also include noise perturbations, wk.

These equations, in the absence of noise, model the actual motion of the object and the
actual measurements. The noise contributions at each step are unknown and cannot be
modeled. Only the noise covariance matrices are known. The state covariance matrix is
updated with knowledge of the noise covariance only.

You can read a brief description of the linear Kalman filter algorithm in “Linear Kalman
Filters” .

References

[1] Brown, R.G. and P.Y.C. Wang. Introduction to Random Signal Analysis and Applied
Kalman Filtering. 3rd Edition. New York: John Wiley & Sons, 1997.

[2] Kalman, R. E. "A New Approach to Linear Filtering and Prediction Problems."
Transaction of the ASME–Journal of Basic Engineering, Vol. 82, Series D, March
1960, pp. 35–45.

[3] Blackman, Samuel. Multiple-Target Tracking with Radar Applications, Artech House.
1986.

4 Objects in Automated Driving System Toolbox

4-182

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• When you create a trackingKF object, and you specify a value other than Custom for
the MotionModel value, you must specify the state vector explicitly at construction
time using the State property. The choice of motion model determines the size of the
state vector but does not specify the data type, for example, double precision or single
precision. Both size and data type are required for code generation.

See Also
Functions
initcakf | initcvkf

Classes
trackingEKF | trackingUKF

System Objects
multiObjectTracker

Topics
“Linear Kalman Filters”

Introduced in R2017a

 trackingKF class

4-183

clone
Class: trackingKF

Create Linear Kalman filter object with identical property values

Syntax
filter2 = clone(filter)

Description
filter2 = clone(filter) creates another instance of the object, filter, having
identical property values. If an object is locked, the clone method creates a copy that is
also locked and has states initialized to the same values as the original. If an object is not
locked, the clone method creates a new unlocked object with uninitialized states.

Input Arguments
filter — Linear Kalman filter
trackingKF object

Linear Kalman filter, specified as a trackingKF object.
Example: filter = trackingKF

Output Arguments
filter2 — Linear Kalman filter
trackingKF object

Linear Kalman filter, returned as a trackingKF object.

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-184

correct
Class: trackingKF

Correct Kalman state vector and state covariance matrix

Syntax
[xcorr,Pcorr] = correct(filter,z)
[xcorr,Pcorr] = correct(filter,z,zcov)

Description
[xcorr,Pcorr] = correct(filter,z) returns the corrected state vector, xcorr,
and the corrected state error covariance matrix, Pcorr, of the tracking filter, filter,
based on the current measurement, z. The internal state and covariance of the Kalman
filter are overwritten by the corrected values.

[xcorr,Pcorr] = correct(filter,z,zcov) also specifies the measurement error
covariance matrix, zcov. When specified, zcov is used as the measurement noise.
Otherwise, measurement noise will have the value of the MeasurementNoise property.

The corrected state and covariance replaces the internal values of the Kalman filter.

Input Arguments
filter — Kalman filter
trackingKF object

Kalman filter, specified as a trackingKF object.
Example: filter = trackingKF

z — Object measurement
real-valued N-element vector

Object measurement, specified as a real-valued N-element vector.

 correct

4-185

Example: [2;1]
Data Types: double

zcov — Error covariance matrix of measurements
positive-definite real-valued N-by-N matrix

Error covariance matrix of measurements, specified as a positive-definite real-valued N-
by-N matrix.
Example: [2,1;1,20]
Data Types: double

Output Arguments
xcorr — Corrected state
real-valued M-element vector

Corrected state, returned as a real-valued M-element vector. The corrected state
represents the a posteriori estimate of the state vector, taking into account the current
measurement.

Pcorr — Corrected state error covariance matrix
positive-definite real-valued M-by-M matrix

Corrected state error covariance matrix, returned as a positive-definite real-valued M-by-
M matrix. The corrected covariance matrix represents the a posteriori estimate of the
state error covariance matrix, taking into account the current measurement.

Examples

Constant-Velocity Linear Kalman Filter

Create a linear Kalman filter that uses a 2D Constant Velocity motion model. Assume
that the measurement consists of the object's x-y location.

Specify the initial state estimate to have zero velocity.

x = 5.3;
y = 3.6;

4 Objects in Automated Driving System Toolbox

4-186

initialState = [x;0;y;0];
KF = trackingKF('MotionModel','2D Constant Velocity','State',initialState);

Create the measured positions from a constant-velocity trajectory.

vx = 0.2;
vy = 0.1;
T = 0.5;
pos = [0:vx*T:2;5:vy*T:6]';

Predict and correct the state of the object.

for k = 1:size(pos,1)
 pstates(k,:) = predict(KF,T);
 cstates(k,:) = correct(KF,pos(k,:));
end

Plot the tracks.

plot(pos(:,1),pos(:,2),'k.', pstates(:,1),pstates(:,3),'+', ...
 cstates(:,1),cstates(:,3),'o')
xlabel('x [m]')
ylabel('y [m]')
grid
xt = [x-2 pos(1,1)+0.1 pos(end,1)+0.1];
yt = [y pos(1,2) pos(end,2)];
text(xt,yt,{'First measurement','First position','Last position'})
legend('Object position', 'Predicted position', 'Corrected position')

 correct

4-187

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-188

distance
Class: trackingKF

Distance from measurements to predicted measurement

Syntax
dist = distance(filter,zmat)

Description
dist = distance(filter,zmat) computes the Mahalanobis distances, dist,
between multiple candidate measurements, zmat, of an object and the measurement
predicted from the state of the tracking filter, filter. The distance method is useful
for associating measurements to tracks.

The distance computation uses the covariance of the predicted state and the covariance
of the process noise. You can call the distance method only after calling the predict
method.

Input Arguments
filter — Linear Kalman filter
trackingKF object

Linear Kalman filter, specified as a trackingKF object.
Example: filter = trackingKF

zmat — Object measurements
real-valued K-by-N matrix

Object measurements, specified as a real-valued K-by-N matrix. N is the number of rows
in the MeasurementModel property. K is the number of candidate measurement vectors.
Each row forms a single measurement vector.

 distance

4-189

Example: [2,1;3,0]
Data Types: double

Output Arguments
dist — Mahalanobis distances
positive real-valued K-element vector

Mahalanobis distances between candidate measurements and a predicted measurement,
returned as a real-valued K-element vector. K is the number of candidate measurement
vectors. The method computes one distance value for each measurement vector.

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-190

predict
Class: trackingKF

Predict linear Kalman filter state

Syntax
[xpred,Ppred] = predict(filter)
[xpred,Ppred] = predict(filter,u)
[xpred,Ppred] = predict(filter,F)
[xpred,Ppred] = predict(filter,F,Q)
[xpred,Ppred] = predict(filter,u,F,G)
[xpred,Ppred] = predict(filter,u,F,G,Q)
[xpred,Ppred] = predict(filter,dt)
[xpred,Ppred] = predict(filter,u,dt)

Description
[xpred,Ppred] = predict(filter) returns the predicted state vector and the
predicted state error covariance matrix for the next time step based on the current time
step. The predicted values overwrite the internal state vector and covariance matrix of
the filter.

This syntax applies when you set the ControlModel to an empty matrix.

[xpred,Ppred] = predict(filter,u) also specifies a control input or force, u.

This syntax applies when you set the ControlModel to a non-empty matrix.

[xpred,Ppred] = predict(filter,F) also specifies the state transition model, F.
Use this syntax to change the state transition model during a simulation.

This syntax applies when you set the ControlModel to an empty matrix.

[xpred,Ppred] = predict(filter,F,Q) also specifies the process noise covariance,
Q. Use this syntax to change the state transition model and the process noise covariance
during a simulation.

 predict

4-191

This syntax applies when you set the ControlModel to an empty matrix.

[xpred,Ppred] = predict(filter,u,F,G) also specifies the control model, G. Use
this syntax to change the state transition model and control model during a simulation.

This syntax applies when you set the ControlModel to a non-empty matrix.

[xpred,Ppred] = predict(filter,u,F,G,Q) specifies the force or control input, u,
the state transition model, F, the control model, G, and the process noise covariance, Q.
Use this syntax to change the state transition model, control model, and process noise
covariance during a simulation.

This syntax applies when you set the ControlModel to a non-empty matrix.

[xpred,Ppred] = predict(filter,dt) returns the predicted state and state
estimation error covariance after the time step, dt.

This syntax applies when the MotionModel property is not set to 'Custom' and the
ControlModel property is set to an empty matrix.

[xpred,Ppred] = predict(filter,u,dt) also specifies a control input, u.

This syntax applies when the MotionModel property is not set to 'Custom' and the
ControlModel property is set to a non-empty matrix.

Input Arguments
filter — Kalman filter
trackingKF object

Kalman filter, specified as trackingKF object.
Example: filter = trackingKF

u — Control vector
real-valued L-element vector

Control vector, real-valued L-element vector.
Data Types: double

4 Objects in Automated Driving System Toolbox

4-192

F — State transition model
real-valued M-by-M matrix

State transition model, specified as a real-valued M-by-M matrix where M is the size of
the state vector.
Data Types: double

Q — Process noise covariance matrix
positive-definite, real-valued M-by-M matrix

Process noise covariance matrix, specified as a positive-definite, real-valued M-by-M
matrix where M is the length of the state vector.
Data Types: double

G — Control model
real-valued M-by-L matrix

Control model, specified as a real-valued M-by-L matrix, where M is the size of the state
vector and L is the number of independent controls.

dt — Time step
positive scalar

Time step, specified as a positive scalar. Units are in seconds.
Data Types: double

Output Arguments
xpred — Predicted state
real-valued M-element vector

Predicted state, returned as a real-valued M-element vector. The predicted state
represents the deducible estimate of the state vector, propagated from the previous state
using the state transition and control models.
Data Types: double

Ppred — Predicted state error covariance matrix
real-valued M-by-M matrix

 predict

4-193

Predicted state covariance matrix, specified as a real-valued M-by-M matrix. M is the size
of the state vector. The predicted state covariance matrix represents the deducible
estimate of the covariance matrix vector. The filter propagates the covariance matrix from
the previous estimate.
Data Types: double

Examples

Constant-Velocity Linear Kalman Filter

Create a linear Kalman filter that uses a 2D Constant Velocity motion model. Assume
that the measurement consists of the object's x-y location.

Specify the initial state estimate to have zero velocity.

x = 5.3;
y = 3.6;
initialState = [x;0;y;0];
KF = trackingKF('MotionModel','2D Constant Velocity','State',initialState);

Create the measured positions from a constant-velocity trajectory.

vx = 0.2;
vy = 0.1;
T = 0.5;
pos = [0:vx*T:2;5:vy*T:6]';

Predict and correct the state of the object.

for k = 1:size(pos,1)
 pstates(k,:) = predict(KF,T);
 cstates(k,:) = correct(KF,pos(k,:));
end

Plot the tracks.

plot(pos(:,1),pos(:,2),'k.', pstates(:,1),pstates(:,3),'+', ...
 cstates(:,1),cstates(:,3),'o')
xlabel('x [m]')
ylabel('y [m]')
grid

4 Objects in Automated Driving System Toolbox

4-194

xt = [x-2 pos(1,1)+0.1 pos(end,1)+0.1];
yt = [y pos(1,2) pos(end,2)];
text(xt,yt,{'First measurement','First position','Last position'})
legend('Object position', 'Predicted position', 'Corrected position')

Introduced in R2017a

 predict

4-195

initialize
Class: trackingKF

Initialize Kalman filter

Syntax
initialize(filter,X,P)
initialize(filter,X,P,Name,Value)

Description
initialize(filter,X,P) initializes the Kalman filter, filter, using the state, x, and
the state covariance, P.

initialize(filter,X,P,Name,Value) initializes the Kalman filter properties using
one of more name-value pairs of the filter.

Note: you cannot change the size or type of properties you are initializing.

Input Arguments
filter — Kalman tracking filter
Kalman filter object

Kalman tracking filter, specified as a Kalman filter object.

X — Initial Kalman filter state
vector | matrix

Initial Kalman filter state, specified as a vector or matrix.

P — Initial Kalman filter state covariance
matrix

4 Objects in Automated Driving System Toolbox

4-196

Initial Kalman filter state covariance, specified as a matrix.

Introduced in R2018a

 initialize

4-197

likelihood
Class: trackingKF

Measurement likelihood

Syntax
measlikelihood = likelihood(filter,zmeas)

Description
measlikelihood = likelihood(filter,zmeas) returns the likelihood of the
measurement, zmeas, of an object tracked by the Kalman filter, filter.

Input Arguments
filter — Kalman tracking filter
Kalman filter object

Kalman tracking filter, specified as a Kalman filter object.

zmeas — Measurement of tracked object
vector | matrix

Measurement of the tracked object, specified as a vector or matrix.

Output Arguments
measlikelihood — Likelihood of measurement
scalar

Likelihood of measurement, returned as a scalar.

4 Objects in Automated Driving System Toolbox

4-198

See Also
Introduced in R2018a

 likelihood

4-199

residual
Class: trackingKF

Measurement residual and residual covariance

Syntax
[zres,rescov] = residual(filter,zmeas)

Description
[zres,rescov] = residual(filter,zmeas) computes the residual, zres, between
a measurement, zmeas, and a predicted measurement derived from the state of the
Kalman filter, filter. The function also returns the covariance of the residual, rescov.

Input Arguments
filter — Linear Kalman tracking filter
Linear Kalman filter object

Linear Kalman tracking filter, specified as a Kalman filter object.

zmeas — Measurement of tracked object
vector | matrix

Measurement of the tracked object, specified as a vector or matrix.

Output Arguments
zres — Residual between measurement and predicted measurement
matrix

Residual between measurement and predicted measurement, returned as a matrix.

4 Objects in Automated Driving System Toolbox

4-200

rescov — Covariance of residuals
matrix

Covariance of the residuals, returned as a matrix.

Algorithms
• The residual is the difference between a measurement and the value predicted by the
filter. The residual d is defined as d = z - Hx. H is the measurement model set by the
MeasurementModel property, x is the current filter state, and z is the current
measurement.

• The covariance of the residual, S, is defined as S = HPH' + R where P is the state
covariance matrix, R is the measurement noise matrix set by the MeasurementNoise
property.

Introduced in R2018a

 residual

4-201

trackingEKF class
Extended Kalman filter

Description
The trackingEKF class creates a discrete-time extended Kalman filter used for tracking
positions and velocities of objects which are encountered in an automated driving
scenario, such as automobiles, pedestrians, bicycles, and stationary structures or
obstacles. A Kalman filter is a recursive algorithm for estimating the evolving state of a
process when measurements are made on the process. The extended Kalman filter can
model the evolution of a state that follows a nonlinear motion model, or when the
measurements are nonlinear functions of the state, or both. The filter also allows for
optional controls or forces to act on the object. The extended Kalman filter is based on the
linearization of the nonlinear equations. This approach leads to a filter formulation similar
to the linear Kalman filter, trackingKF.

The process and the measurements can have Gaussian noise which can be included in two
ways:

• Noise can be added to both the process and the measurements. In this case, the sizes
of the process noise and measurement noise must match the sizes of the state vector
and measurement vector, respectively.

• Noises can be included in the state transition function, the measurement model
function, or both. In these cases, the corresponding noise sizes are not restricted.

Construction
filter = trackingEKF creates an extended Kalman filter object for a discrete-time
system using default values for the StateTransitionFcn, MeasurementFcn, and
State properties. The process and measurement noises are assumed to be additive.

filter = trackingEKF(transitionfcn,measurementfcn,state) specifies the
state transition function, transitionfcn, the measurement function, measurementfcn,
and the initial state of the system, state.

4 Objects in Automated Driving System Toolbox

4-202

filter = trackingEKF(___ ,Name,Value) configures the properties of the extended
Kalman filter object using one or more Name,Value pair arguments. Any unspecified
properties have default values.

Properties
State — Kalman filter state
real-valued M-element vector

Kalman filter state, specified as a real-valued M-element vector.
Example: [200;0.2]
Data Types: double

StateCovariance — State estimation error covariance
positive-definite real-valued M-by-M matrix

State error covariance, specified as a positive-definite real-valued M-by-M matrix where
M is the size of the filter state. The covariance matrix represents the uncertainty in the
filter state.
Example: [20 0.1; 0.1 1]

StateTransitionFcn — State transition function
function handle

State transition function, specified as a function handle. This function calculates the state
vector at time step k from the state vector at time step k–1. The function can take
additional input parameters, such as control inputs or time step size. The function can
also include noise values.

• If HasAdditiveProcessNoise is true, specify the function using one of these
syntaxes:

x(k) = transitionfcn(x(k-1))

x(k) = transitionfcn(x(k-1),parameters)

where x(k) is the state at time k. The parameters term stands for all additional
arguments required by the state transition function.

• If HasAdditiveProcessNoise is false, specify the function using one of these
syntaxes:

 trackingEKF class

4-203

x(k) = transitionfcn(x(k-1),w(k-1))

x(k) = transitionfcn(x(k-1),w(k-1),parameters)

where x(k) is the state at time k and w(k) is a value for the process noise at time k.
The parameters argument stands for all additional arguments required by the state
transition function.

Example: @constacc
Data Types: function_handle

StateTransitionJacobianFcn — State transition function Jacobian
function handle

The Jacobian of the state transition function, specified as a function handle. This function
has the same input arguments as the state transition function.

• If HasAdditiveProcessNoise is true, specify the Jacobian function using one of
these syntaxes:

Jx(k) = statejacobianfcn(x(k))

Jx(k) = statejacobianfcn(x(k),parameters)

where x(k) is the state at time k. The parameters argument stands for all additional
arguments required by the state transition function.

Jx(k) denotes the Jacobian of the predicted state with respect to the previous state.
The Jacobian is an M-by-M matrix at time k. The Jacobian function can take additional
input parameters, such as control inputs or time step size.

• If HasAdditiveProcessNoise is false, specify the Jacobian function using one of
these syntaxes:

[Jx(k),Jw(k)] = statejacobianfcn(x(k),w(k))

[Jx(k),Jw(k)] = statejacobianfcn(x(k),w(k),parameters)

where x(k) is the state at time k and w(k) is a sample Q-element vector of the
process noise at time k. Q is the size of the process noise covariance. Unlike the case
of additive process noise, the process noise vector in the non-additive noise case need
not have the same dimensions as the state vector.

4 Objects in Automated Driving System Toolbox

4-204

Jx(k) denotes the Jacobian of the predicted state with respect to the previous state.
This Jacobian is an M-by-M matrix at time k. The Jacobian function can take additional
input parameters, such as control inputs or time step size.

Jw(k) denotes the M-by-Q Jacobian of the predicted state with respect to the process
noise elements.

If not specified, the Jacobians are computed by numerical differencing at each call of the
predict method. This computation can increase the processing time and numerical
inaccuracy.
Example: @constaccjac
Data Types: function_handle

ProcessNoise — Process noise covariance
1 (default) | positive real-valued scalar | positive-definite real-valued matrix

Process noise covariance:

• When HasAdditiveProcessNoise is true, specify the process noise covariance as a
scalar or a positive definite real-valued M-by-M matrix. M is the dimension of the state
vector. When specified as a scalar, the matrix is a multiple of the M-by-M identity
matrix.

• When HasAdditiveProcessNoise is false, specify the process noise covariance as
an Q-by-Q matrix. Q is the size of the process noise vector.

You must specify ProcessNoise before any call to the predict method. In later calls
to predict, you can optionally specify the process noise as a scalar. In this case, the
process noise matrix is a multiple of the Q-by-Q identity matrix.

Example: [1.0 0.05; 0.05 2]

HasAdditiveProcessNoise — Model additive process noise
true (default) | false

Option to model processes noise as additive, specified as true or false. When this
property is true, process noise is added to the state vector. Otherwise, noise is
incorporated into the state transition function.

MeasurementFcn — Measurement model function
function handle

 trackingEKF class

4-205

Measurement model function, specified as a function handle. This function can be a
nonlinear function that models measurements from the predicted state. Input to the
function is the M-element state vector. The output is the N-element measurement vector.
The function can take additional input arguments, such as sensor position and
orientation.

• If HasAdditiveMeasurementNoise is true, specify the function using one of these
syntaxes:

z(k) = measurementfcn(x(k))

z(k) = measurementfcn(x(k),parameters)

where x(k) is the state at time k and z(k) is the predicted measurement at time k.
The parameters term stands for all additional arguments required by the
measurement function.

• If HasAdditiveMeasurementNoise is false, specify the function using one of these
syntaxes:

z(k) = measurementfcn(x(k),v(k))

z(k) = measurementfcn(x(k),v(k),parameters)

where x(k) is the state at time k and v(k) is the measurement noise at time k. The
parameters argument stands for all additional arguments required by the
measurement function.

Example: @cameas
Data Types: function_handle

MeasurementJacobianFcn — Jacobian of measurement function
function handle

Jacobian of the measurement function, specified as a function handle. The function has
the same input arguments as the measurement function. The function can take additional
input parameters, such sensor position and orientation.

• If HasAdditiveMeasurmentNoise is true, specify the Jacobian function using one
of these syntaxes:

Jmx(k) = measjacobianfcn(x(k))

Jmx(k) = measjacobianfcn(x(k),parameters)

4 Objects in Automated Driving System Toolbox

4-206

where x(k) is the state at time k. Jx(k) denotes the N-by-M Jacobian of the
measurement function with respect to the state. The parameters argument stands
for all arguments required by the measurement function.

• If HasAdditiveMeasurmentNoise is false, specify the Jacobian function using one
of these syntaxes:

[Jmx(k),Jmv(k)] = measjacobianfcn(x(k),v(k))

[Jmx(k),Jmv(k)] = measjacobianfcn(x(k),v(k),parameters)

where x(k) is the state at time k and v(k) is an R-dimensional sample noise vector.
Jmx(k) denotes the N-by-M Jacobian of the measurement function with respect to the
state. Jmv(k) denotes the Jacobian of the N-by-R measurement function with respect
to the measurement noise. The parameters argument stands for all arguments
required by the measurement function.

If not specified, measurement Jacobians are computed using numerical differencing at
each call to the correct method. This computation can increase processing time and
numerical inaccuracy.
Example: @cameasjac
Data Types: function_handle

MeasurementNoise — Measurement noise covariance
1 (default) | positive scalar | positive-definite real-valued matrix

Measurement noise covariance, specified as a positive scalar or positive-definite real-
valued matrix.

• When HasAdditiveMeasurementNoise is true, specify the measurement noise
covariance as a scalar or an N-by-N matrix. N is the size of the measurement vector.
When specified as a scalar, the matrix is a multiple of the N-by-N identity matrix.

• When HasAdditiveMeasurementNoise is false, specify the measurement noise
covariance as an R-by-R matrix. R is the size of the measurement noise vector.

You must specify MeasurementNoise before any call to the correct method. After
the first call to correct, you can optionally specify the measurement noise as a scalar.
In this case, the measurement noise matrix is a multiple of the R-by-R identity matrix.

Example: 0.2

 trackingEKF class

4-207

HasAdditiveMeasurmentNoise — Model additive measurement noise
true (default) | false

Option to enable additive measurement noise, specified as true or false. When this
property is true, noise is added to the measurement. Otherwise, noise is incorporated
into the measurement function.

Methods
clone Create extended Kalman filter object with identical property values
correct Correct Kalman state vector and state error covariance matrix
distance Distance from measurements to predicted measurement
predict Predict extended Kalman state vector and state error covariance matrix
initialize Initialize extended Kalman filter
likelihood Measurement likelihood
residual Measurement residual and residual covariance

Examples

Constant-Velocity Extended Kalman Filter

Create a two-dimensional trackingEKF object and use name-value pairs to define the
StateTransitionJacobianFcn and MeasurementJacobianFcn properties. Use the
predefined constant-velocity motion and measurement models and their Jacobians.

EKF = trackingEKF(@constvel,@cvmeas,[0;0;0;0], ...
 'StateTransitionJacobianFcn',@constveljac, ...
 'MeasurementJacobianFcn',@cvmeasjac);

Run the filter. Use the predict and correct methods to propagate the state. You may
call predict and correct in any order and as many times you want. Specify the
measurement in Cartesian coordinates.

measurement = [1;1;0];
[xpred, Ppred] = predict(EKF);
[xcorr, Pcorr] = correct(EKF,measurement);

4 Objects in Automated Driving System Toolbox

4-208

[xpred, Ppred] = predict(EKF);
[xpred, Ppred] = predict(EKF)

xpred = 4×1

 1.2500
 0.2500
 1.2500
 0.2500

Ppred = 4×4

 11.7500 4.7500 0 0
 4.7500 3.7500 0 0
 0 0 11.7500 4.7500
 0 0 4.7500 3.7500

Definitions

Filter Parameters
This table relates the filter model parameters to the object properties. In this table, M is
the size of the state vector and N is the size of the measurement vector.

 trackingEKF class

4-209

Filter Parameter Meaning Specified in
Property

Size

f State transition
function that
specifies the
equations of motion
of the object. This
function determines
the state at time k+1
as a function of the
state and the
controls at time k.
The state transition
function depends on
the time-increment
of the filter.

StateTransitionF
cn

Function returns M-
element vector

h Measurement
function that
specifies how the
measurements are
functions of the state
and measurement
noise.

MeasurementFcn Function returns N-
element vector

xk Estimate of the
object state.

State M-element vector

Pk State error
covariance matrix
representing the
uncertainty in the
values of the state.

StateCovariance M-by-M matrix

4 Objects in Automated Driving System Toolbox

4-210

Filter Parameter Meaning Specified in
Property

Size

Qk Estimate of the
process noise
covariance matrix at
step k. Process noise
is a measure of the
uncertainty in the
dynamic model. It is
assumed to be zero-
mean white Gaussian
noise.

ProcessNoise M-by-M matrix when
HasAdditiveProce
ssNoise is true. Q-
by-Q matrix when
HasAdditiveProce
ssNoise is false

Rk Estimate of the
measurement noise
covariance at step k.
Measurement noise
reflects the
uncertainty of the
measurement. It is
assumed to be zero-
mean white Gaussian
noise.

MeasurementNoise N-by-N matrix when
HasAdditiveMeasu
rementNoise is
true. R-by-R when
HasAdditiveMeasu
rementNoise is
false.

F Function
determining Jacobian
of propagated state
with respect to
previous state.

StateTransitionJ
acobianFcn

M-by-M matrix

H Function
determining
Jacobians of
measurement with
respect to the state
and measurement
noise.

MeasurementJacob
ianFcn

N-by-M for state
vector Jacobian and
N-by-R for
measurement vector
Jacobian

 trackingEKF class

4-211

Algorithms
The extended Kalman filter estimates the state of a process governed by this nonlinear
stochastic equation:

x f x u w tk k k k+
=1 (, , ,)

xk is the state at step k. f() is the state transition function. Random noise perturbations,
wk, can affect the object motion. The filter also supports a simplified form,

x f x u t wk k k k+
= +1 (, ,)

To use the simplified form, set HasAdditiveProcessNoise to true.

In the extended Kalman filter, the measurements are also general functions of the state:

z h x v tk k k= (, ,)

h(xk,vk,t) is the measurement function that determines the measurements as functions of
the state. Typical measurements are position and velocity or some function of position
and velocity. The measurements can also include noise, represented by vk. Again, the filter
offers a simpler formulation.

z h x t vk k k= +(,)

To use the simplified form, set HasAdditiveMeasurmentNoise to true.

These equations represent the actual motion and the actual measurements of the object.
However, the noise contribution at each step is unknown and cannot be modeled
deterministically. Only the statistical properties of the noise are known.

References
[1] Brown, R.G. and P.Y.C. Wang. Introduction to Random Signal Analysis and Applied

Kalman Filtering. 3rd Edition. New York: John Wiley & Sons, 1997.

[2] Kalman, R. E. “A New Approach to Linear Filtering and Prediction Problems.”
Transactions of the ASME–Journal of Basic Engineering, Vol. 82, Series D, March
1960, pp. 35–45.

4 Objects in Automated Driving System Toolbox

4-212

[3] Blackman, Samuel and R. Popoli. Design and Analysis of Modern Tracking Systems,
Artech House.1999.

[4] Blackman, Samuel. Multiple-Target Tracking with Radar Applications, Artech House.
1986.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac |
constvel | constveljac | ctmeas | ctmeasjac | cvmeas | cvmeasjac | initcaekf |
initctekf | initcvekf

Classes
trackingKF | trackingUKF

System Objects
multiObjectTracker

Topics
“Extended Kalman Filters”

Introduced in R2017a

 trackingEKF class

4-213

clone
Class: trackingEKF

Create extended Kalman filter object with identical property values

Syntax
filter2 = clone(filter)

Description
filter2 = clone(filter) creates another instance of the object, trackingEKF,
having identical property values. If an object is locked, the clone method creates a copy
that is also locked and has states initialized to the same values as the original. If an object
is not locked, the clone method creates a new unlocked object with uninitialized states.

Input Arguments
filter — Extended Kalman filter
trackingEKF object

Extended Kalman filter, specified as a trackingEKF object.
Example: filter = trackingEKF

Output Arguments
filter2 — Extended Kalman filter
trackingEKF object

Extended Kalman filter, returned as a trackingEKF object.

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-214

correct
Class: trackingEKF

Correct Kalman state vector and state error covariance matrix

Syntax
[xcorr,Pcorr] = correct(filter,z)
[xcorr,Pcorr] = correct(filter,z,varargin)

Description
[xcorr,Pcorr] = correct(filter,z) returns the corrected state vector, xcorr,
and the corrected state error covariance matrix, Pcorr, for the extended Kalman filter
defined in filter, based on the current measurement, z. The internal state and
covariance of the Kalman filter are overwritten by the corrected values.

[xcorr,Pcorr] = correct(filter,z,varargin) also specifies any input
arguments to the measurement function. These arguments are used as input to the
measurement function specified in the MeasurementFcn property.

Input Arguments
filter — Extended Kalman filter
trackingEKF object

Extended Kalman filter, specified as a trackingEKF object.
Example: filter = trackingEKF

z — Object measurement
real-valued N-element vector

Object measurement, specified as a real-valued N-element vector.
Example: [2;1]

 correct

4-215

varargin — Measurement function arguments
comma-separated list

Measurement function arguments, specified as a comma-separated list. These arguments
are the same ones that are passed into the measurement function specified by the
MeasurementFcn property. For example, if you set MeasurementFcn to @cameas, and
then call

[xcorr,Pcorr] = correct(filter,frame,sensorpos,sensorvel)

the correct method will internally call

meas = cameas(state,frame,sensorpos,sensorvel)

.

Output Arguments
xcorr — Corrected state
real-valued M-element vector

Corrected state, returned as a real-valued M-element vector. The corrected state
represents the a posteriori estimate of the state vector, taking into account the current
measurement.

Pcorr — Corrected state error covariance matrix
positive-definite real-valued M-by-M matrix

Corrected state error covariance matrix, returned as a positive-definite real-valued M-by-
M matrix. The corrected state covariance matrix represents the a posteriori estimate of
the state covariance matrix, taking into account the current measurement.

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-216

distance
Class: trackingEKF

Distance from measurements to predicted measurement

Syntax
dist = distance(filter,zmat)
dist = distance(filter,zmat,measurementParams)

Description
dist = distance(filter,zmat) computes the Mahalanobis distances between
multiple candidate measurements of an object, zmat, and the predicted measurement
computed by the trackingEKF object. The distance method is used to assign
measurements to tracks.

This distance computation takes into account the covariance of the predicted state and
the covariance of the process noise. You can call the distance method only after calling
the predict method.

dist = distance(filter,zmat,measurementParams) also specifies the parameters
used by the measurement function set in the MeasurementFcn property.

Input Arguments
filter — Extended Kalman filter
trackingEKF object

Extended Kalman filter, specified as a trackingEKF object.
Example: filter = trackingEKF

zmat — Object measurements
real-valued K-by-N matrix

 distance

4-217

Measurements, specified as a real-valued K-by-N matrix. K is the number of candidate
measurement vectors. Each row corresponds to a candidate measurement vector.N is the
number of rows in the output of the function specified by the MeasurementFcn property.
Example: [2,1;3,0]
Data Types: double

measurementParams — Measurement function parameters
{} (default) | cell array

Measurement function parameters, specified as a cell array containing arguments to the
measurement function specified by the MeasurementFcn property. Suppose you set
MeasurementFcn to @cameas, and then set these values:

measurementParams = {frame,sensorpos,sensorpos)

The distance method internally calls the following:

cameas(state,frame,sensorpos,sensorvel)

Data Types: cell

Output Arguments
dist — Mahalanobis distances
real-valued K-element vector of positive values

Mahalanobis distances between candidate measurements and the predicted
measurement, returned as a real-valued K-element vector of positive values. There is one
distance value per measurement vector.
Data Types: double

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-218

predict
Class: trackingEKF

Predict extended Kalman state vector and state error covariance matrix

Syntax
[xpred,Ppred] = predict(filter)
[xpred,Ppred] = predict(filter,varargin)
[xpred,Ppred] = predict(___ ,dt)

Description
[xpred,Ppred] = predict(filter) returns the predicted state vector, xpred, and
state error covariance matrix, Ppred, at the next time step based on the current time
step. The predicted values overwrite the internal state vector and state error covariance
matrix of the extended Kalman filter.

[xpred,Ppred] = predict(filter,varargin) specifies input arguments,
varargin, for the state transition function set in the StateTransitionFcn property.

[xpred,Ppred] = predict(___ ,dt) also specifies the time step, dt.

Input Arguments
filter — Extended Kalman filter
trackingEKF object

Extended Kalman filter, specified as a trackingEKF object.
Example: filter = trackingEKF

varargin — State transition function arguments
comma-separated list

 predict

4-219

State transition function arguments, specified as a comma-separated list. These
arguments are the same ones that are passed into the state transition function specified
by the StateTransitionFcn property. For example, if you set the
StateTransitionFcn property to @constacc, and then call

[xpred,Ppred] = predict(filter,dt)

the predict method will internally call

state = constacc(state,dt)

dt — Time step
positive scalar

Time step, specified as a positive scalar. Units are in seconds.
Data Types: double

Output Arguments
xpred — Predicted state
real-valued M-element vector

Predicted state, returned as a real-valued M-element vector. The predicted state
represents the a priori estimate of the state vector propagated from the previous state.
The prediction uses the state transition function specified in the StateTransitionFcn
property.
Data Types: double

Ppred — Predicted state error covariance matrix
real-valued M-by-M matrix

Predicted state error covariance matrix, returned as a real-valued M-by-M matrix. This
predicted error is the a priori estimate of the state error covariance matrix. predict
uses the state transition function Jacobian specified in the
StateTransitionJacobianFcn property.
Data Types: double

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-220

initialize
Class: trackingEKF

Initialize extended Kalman filter

Syntax
initialize(filterobj,X,P)
initialize(filterobj,X,P,Name,Value)

Description
initialize(filterobj,X,P) initializes the extended Kalman filter, filterobj, using
the state, x, and the state covariance, P.

initialize(filterobj,X,P,Name,Value) initializes Kalman filter properties using
name-value pairs.

Note: you cannot change the size or type of properties you are initializing.

Input Arguments
filterobj — Extended Kalman tracking filter
Extended Kalman filter object

Kalman tracking filter, specified as a Kalman filter object.

X — Initial extended Kalman filter state
vector | matrix

Initial extended Kalman filter state, specified as a vector or matrix.

P — Initial extended Kalman filter state covariance
matrix

 initialize

4-221

Initial extended Kalman filter state covariance, specified as a matrix.

Introduced in R2018a

4 Objects in Automated Driving System Toolbox

4-222

likelihood
Class: trackingEKF

Measurement likelihood

Syntax
measlikelihood = likelihood(filterobj,zmeas)
measlikelihood = likelihood(filterobj,zmeas,measparams)

Description
measlikelihood = likelihood(filterobj,zmeas) returns the likelihood of the
measurement, zmeas, of an object tracked by the extended Kalman filter, filterobj.

measlikelihood = likelihood(filterobj,zmeas,measparams) also specifies
measurement parameters, measparams.

Input Arguments
filterobj — Extended Kalman tracking filter
Kalman filter object

Extended Kalman tracking filter, specified as an extended Kalman filter object.

zmeas — Measurement of tracked object
vector | matrix

Measurement of the tracked object, specified as a vector or matrix.

measparams — Parameters for measurement function
{} | cell array

 likelihood

4-223

Parameters for measurement function, specified as a cell array. The parameters are
passed to the measurement function defined in the MeasurementFcn property of the
Extended Kalman filter, filterobj.

Output Arguments
measlikelihood — Likelihood of measurement
scalar

Likelihood of measurement, returned as a scalar.

See Also
Introduced in R2018a

4 Objects in Automated Driving System Toolbox

4-224

residual
Class: trackingEKF

Measurement residual and residual covariance

Syntax
[zres,rescov] = residual(filterobj,zmeas)
[zres,rescov] = residual(filterobj,zmeas,measparams)

Description
[zres,rescov] = residual(filterobj,zmeas)computes the residual, zres,
between a measurement, zmeas, and a predicted measurement produced by the Kalman
filter, filterobj. The function also returns the covariance of the residual, zres.

[zres,rescov] = residual(filterobj,zmeas,measparams) also specifies
measurement parameters, measparams.

Input Arguments
filterobj — Kalman tracking filter
Kalman filter object

Kalman tracking filter, specified as a Kalman filter object.

zmeas — Measurement of tracked object
vector | matrix

Measurement of the tracked object, specified as a vector or matrix.

measparams — Parameters for measurement function
cell array

 residual

4-225

Parameters for measurement function, specified as a cell array. The parameters are
passed to the measurement function defined in the MeasurementFcn property of the
filterobj

Output Arguments
zres — Residual between measurement and predicted measurement
matrix

Residual between measurement and predicted measurement, returned as a matrix.

rescov — Covariance of residuals
matrix

Covariance of the residuals, returned as a matrix.

Algorithms
• The residual is the difference between a measurement and the value predicted by the
filter. The residual d is defined as d = z - h(x). h is the measurement function set by the
MeasurementFcn property, x is the current filter state, and z is the current
measurement.

• The covariance of the residual, S, is defined as S = HPH' + R where P is the state
covariance matrix, R is the measurement noise matrix set by the MeasurementNoise
property.

Introduced in R2018a

4 Objects in Automated Driving System Toolbox

4-226

trackingUKF class

Unscented Kalman filter

Description
The trackingUKF class creates a discrete-time unscented Kalman filter used for tracking
positions and velocities of objects which may be encountered in an automated driving
scenario, such as automobiles, pedestrians, bicycles, and stationary structures or
obstacles. An unscented Kalman filter is a recursive algorithm for estimating the evolving
state of a process when measurements are made on the process. The unscented Kalman
filter can model the evolution of a state that obeys a nonlinear motion model. The
measurements can also be nonlinear functions of the state. In addition, the process and
the measurements can have noise. Use an unscented Kalman filter when the current state
is a nonlinear function of the previous state or when the measurements are nonlinear
functions of the state or when both conditions apply. The unscented Kalman filter
estimates the uncertainty about the state, and its propagation through the nonlinear state
and measurement equations, using a fixed number of sigma points. Sigma points are
chosen using the unscented transformation as parameterized by the Alpha, Beta, and
Kappa properties.

Construction
filter = trackingUKF creates an unscented Kalman filter object for a discrete-time
system using default values for the StateTransitionFcn, MeasurementFcn, and
State properties . The process and measurement noises are assumed to be additive.

filter = trackingUKF(transitionfcn,measurementfcn,state) specifies the
state transition function, transitionfcn, the measurement function, measurementfcn,
and the initial state of the system, state.

filter = trackingUKF(___ ,Name,Value) configures the properties of the
unscented Kalman filter object using one or more Name,Value pair arguments. Any
unspecified properties have default values.

 trackingUKF class

4-227

Properties
State — Kalman filter state
real-valued M-element vector

Kalman filter state, specified as a real-valued M-element vector.
Example: [200;0.2]
Data Types: double

StateCovariance — State estimation error covariance
positive-definite real-valued M-by-M matrix

State error covariance, specified as a positive-definite real-valued M-by-M matrix where
M is the size of the filter state. The covariance matrix represents the uncertainty in the
filter state.
Example: [20 0.1; 0.1 1]

StateTransitionFcn — State transition function
function handle

State transition function, specified as a function handle. This function calculates the state
vector at time step k from the state vector at time step k–1. The function can take
additional input parameters, such as control inputs or time step size. The function can
also include noise values.

• If HasAdditiveProcessNoise is true, specify the function using one of these
syntaxes:

x(k) = transitionfcn(x(k-1))

x(k) = transitionfcn(x(k-1),parameters)

where x(k) is the state at time k. The parameters term stands for all additional
arguments required by the state transition function.

• If HasAdditiveProcessNoise is false, specify the function using one of these
syntaxes:

x(k) = transitionfcn(x(k-1),w(k-1))

x(k) = transitionfcn(x(k-1),w(k-1),parameters)

4 Objects in Automated Driving System Toolbox

4-228

where x(k) is the state at time k and w(k) is a value for the process noise at time k.
The parameters argument stands for all additional arguments required by the state
transition function.

Example: @constacc
Data Types: function_handle

ProcessNoise — Process noise covariance
1 (default) | positive real-valued scalar | positive-definite real-valued matrix

Process noise covariance:

• When HasAdditiveProcessNoise is true, specify the process noise covariance as a
scalar or a positive definite real-valued M-by-M matrix. M is the dimension of the state
vector. When specified as a scalar, the matrix is a multiple of the M-by-M identity
matrix.

• When HasAdditiveProcessNoise is false, specify the process noise covariance as
an Q-by-Q matrix. Q is the size of the process noise vector.

You must specify ProcessNoise before any call to the predict method. In later calls
to predict, you can optionally specify the process noise as a scalar. In this case, the
process noise matrix is a multiple of the Q-by-Q identity matrix.

Example: [1.0 0.05; 0.05 2]

HasAdditiveProcessNoise — Model additive process noise
true (default) | false

Option to model processes noise as additive, specified as true or false. When this
property is true, process noise is added to the state vector. Otherwise, noise is
incorporated into the state transition function.

MeasurementFcn — Measurement model function
function handle

Measurement model function, specified as a function handle. This function can be a
nonlinear function that models measurements from the predicted state. Input to the
function is the M-element state vector. The output is the N-element measurement vector.
The function can take additional input arguments, such as sensor position and
orientation.

 trackingUKF class

4-229

• If HasAdditiveMeasurementNoise is true, specify the function using one of these
syntaxes:

z(k) = measurementfcn(x(k))

z(k) = measurementfcn(x(k),parameters)

where x(k) is the state at time k and z(k) is the predicted measurement at time k.
The parameters term stands for all additional arguments required by the
measurement function.

• If HasAdditiveMeasurementNoise is false, specify the function using one of these
syntaxes:

z(k) = measurementfcn(x(k),v(k))

z(k) = measurementfcn(x(k),v(k),parameters)

where x(k) is the state at time k and v(k) is the measurement noise at time k. The
parameters argument stands for all additional arguments required by the
measurement function.

Example: @cameas
Data Types: function_handle

MeasurementNoise — Measurement noise covariance
1 (default) | positive scalar | positive-definite real-valued matrix

Measurement noise covariance, specified as a positive scalar or positive-definite real-
valued matrix.

• When HasAdditiveMeasurementNoise is true, specify the measurement noise
covariance as a scalar or an N-by-N matrix. N is the size of the measurement vector.
When specified as a scalar, the matrix is a multiple of the N-by-N identity matrix.

• When HasAdditiveMeasurementNoise is false, specify the measurement noise
covariance as an R-by-R matrix. R is the size of the measurement noise vector.

You must specify MeasurementNoise before any call to the correct method. After
the first call to correct, you can optionally specify the measurement noise as a scalar.
In this case, the measurement noise matrix is a multiple of the R-by-R identity matrix.

Example: 0.2

4 Objects in Automated Driving System Toolbox

4-230

HasAdditiveMeasurmentNoise — Model additive measurement noise
true (default) | false

Option to enable additive measurement noise, specified as true or false. When this
property is true, noise is added to the measurement. Otherwise, noise is incorporated
into the measurement function.

Alpha — Sigma point spread around state
1.0e-3 (default) | positive scalar greater than 0 and less than or equal to 1

Sigma point spread around state, specified as a positive scalar greater than zero and less
than or equal to one.

Beta — Distribution of sigma points
2 (default) | nonnegative scalar

Distribution of sigma points, specified as a nonnegative scalar. This parameter
incorporates knowledge of the noise distribution of states for generating sigma points.
For Gaussian distributions, setting Beta to 2 is optimal.

Kappa — Secondary scaling factor for generating sigma points
0 (default) | scalar from 0 to 3

Secondary scaling factor for generation of sigma points, specified as a scalar from 0 to 3.
This parameter helps specify the generation of sigma points.

Methods

clone Create unscented Kalman filter object with identical property values
correct Correct Kalman state vector and state error covariance matrix
distance Distance from measurements to predicted measurement
predict Predict unscented Kalman state vector and state error covariance matrix
initialize Initialize unscented Kalman filter
likelihood Measurement likelihood
residual Measurement residual and residual covariance

 trackingUKF class

4-231

Examples

Constant-Velocity Unscented Kalman Filter

Create a trackingUKF object using the predefined constant-velocity motion model,
constvel, and the associated measurement model, cvmeas. These models assume that
the state vector has the form [x;vx;y;vy] and that the position measurement is in Cartesian
coordinates, [x;y;z]. Set the sigma point spread property to 1e-2.

filter = trackingUKF(@constvel,@cvmeas,[0;0;0;0],'Alpha',1e-2);

Run the filter. Use the predict and correct methods to propagate the state. You can
call predict and correct in any order and as many times as you want.

meas = [1;1;0];
[xpred, Ppred] = predict(filter);
[xcorr, Pcorr] = correct(filter,meas);
[xpred, Ppred] = predict(filter);
[xpred, Ppred] = predict(filter)

xpred = 4×1

 1.2500
 0.2500
 1.2500
 0.2500

Ppred = 4×4

 11.7500 4.7500 -0.0000 0.0000
 4.7500 3.7500 -0.0000 0.0000
 -0.0000 -0.0000 11.7500 4.7500
 0.0000 0.0000 4.7500 3.7500

4 Objects in Automated Driving System Toolbox

4-232

Definitions

Filter parameters and dimensions
This table relates the filter model parameters to the object properties. M is the size of the
state vector and N is the size of the measurement vector.

Filter Parameter Meaning Specified in
Property

Size

f State transition
function that
specifies the
equations of motion
of the object. This
function determines
the state at time k+1
as a function of the
state and the
controls at time k.
The state transition
function depends on
the time-increment
of the filter.

StateTransitionF
cn

Function returns M-
element vector

h Measurement
function that
specifies how the
measurements are
functions of the state
and measurement
noise.

MeasurementFcn Function returns N-
element vector

xk Estimate of the
object state.

State M

Pk State error
covariance matrix
representing the
uncertainty in the
values of the state

StateCovariance M-by-M

 trackingUKF class

4-233

Filter Parameter Meaning Specified in
Property

Size

Qk Estimate of the
process noise
covariance matrix at
step k. Process noise
is measure of the
uncertainty in your
dynamic model and
is assumed to be
zero-mean white
Gaussian noise

ProcessNoise M-by-M when
HasAdditiveProce
ssNoise is true. Q-
by-Q when
HasAdditiveProce
ssNoiseis false.

Rk Estimate of the
measurement noise
covariance at step k.
Measurement noise
reflects the
uncertainty of the
measurement and is
assumed to be zero-
mean white Gaussian
noise.

MeasurementNoise N-by-N when
HasAdditiveMeasu
rementNoise is
true. R-by-R when
HasAdditiveMeasu
rementNoise is
false.

α Determines spread of
sigma points.

Alpha scalar

β A priori knowledge of
sigma point
distribution.

Beta scalar

κ Secondary scaling
parameter.

Kappa scalar

Algorithms
The unscented Kalman filter estimates the state of a process governed by a nonlinear
stochastic equation

x f x u w tk k k k+
=1 (, , ,)

4 Objects in Automated Driving System Toolbox

4-234

where xk is the state at step k. f() is the state transition function, uk are the controls on
the process. The motion may be affected by random noise perturbations, wk. The filter
also supports a simplified form,

x f x u t wk k k k+
= +1 (, ,)

To use the simplified form, set HasAdditiveProcessNoise to true.

In the unscented Kalman filter, the measurements are also general functions of the state,

z h x v tk k k= (, ,)

where h(xk,vk,t) is the measurement function that determines the measurements as
functions of the state. Typical measurements are position and velocity or some function of
these. The measurements can include noise as well, represented by vk. Again the class
offers a simpler formulation

z h x t vk k k= +(,)

To use the simplified form, set HasAdditiveMeasurmentNoise to true.

These equations represent the actual motion of the object and the actual measurements.
However, the noise contribution at each step is unknown and cannot be modeled exactly.
Only statistical properties of the noise are known.

References

[1] Brown, R.G. and P.Y.C. Wang. Introduction to Random Signal Analysis and Applied
Kalman Filtering. 3rd Edition. New York: John Wiley & Sons, 1997.

[2] Kalman, R. E. “A New Approach to Linear Filtering and Prediction Problems.”
Transactions of the ASME–Journal of Basic Engineering, Vol. 82, Series D, March
1960, pp. 35–45.

[3] Wan, Eric A. and R. van der Merwe. “The Unscented Kalman Filter for Nonlinear
Estimation”. Adaptive Systems for Signal Processing, Communications, and
Control. AS-SPCC, IEEE, 2000, pp.153–158.

 trackingUKF class

4-235

[4] Wan, Merle. “The Unscented Kalman Filter.” In Kalman Filtering and Neural
Networks, edited by Simon Haykin. John Wiley & Sons, Inc., 2001.

[5] Sarkka S. “Recursive Bayesian Inference on Stochastic Differential Equations.”
Doctoral Dissertation. Helsinki University of Technology, Finland. 2006.

[6] Blackman, Samuel. Multiple-Target Tracking with Radar Applications. Artech House,
1986.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac |
constvel | constveljac | ctmeas | ctmeasjac | cvmeas | cvmeasjac | initcaukf |
initctukf | initcvukf

Classes
trackingEKF | trackingKF

System Objects
multiObjectTracker

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-236

clone
Class: trackingUKF

Create unscented Kalman filter object with identical property values

Syntax
filter2 = clone(filter)

Description
filter2 = clone(filter) creates another instance of the object, trackingUKF,
having identical property values. If an object is locked, the clone method creates a copy
that is also locked and has states initialized to the same values as the original. If an object
is not locked, the clone method creates a new unlocked object with uninitialized states.

Input Arguments
filter — Unscented Kalman filter
trackingUKF object

Unscented Kalman filter, specified as a trackingUKF object.
Example: filter = trackingEKF

Output Arguments
filter2 — Unscented Kalman filter
trackingUKF object

Unscented Kalman filter, returned as a trackingUKF object.

Introduced in R2017a

 clone

4-237

correct
Class: trackingUKF

Correct Kalman state vector and state error covariance matrix

Syntax
[xcorr,Pcorr] = correct(filter,z)
[xcorr,Pcorr] = correct(filter,z,varargin)

Description
[xcorr,Pcorr] = correct(filter,z) returns the corrected state vector, xcorr,
and the corrected state error covariance matrix, Pcorr, for the unscented Kalman filter
defined in filter, based on the current measurement, z. The internal state and
covariance of the Kalman filter are overwritten by the corrected values.

[xcorr,Pcorr] = correct(filter,z,varargin) also specifies any input
arguments to the measurement function. These arguments are used as input to the
measurement function specified in the MeasurementFcn property.

Input Arguments
filter — Unscented Kalman filter
trackingUKF object

Unscented Kalman filter, specified as a trackingUKF object.
Example: filter = trackingUKF

z — Object measurement
real-valued N-element vector

Object measurement, specified as a real-valued N-element vector.
Example: [2;1]

4 Objects in Automated Driving System Toolbox

4-238

varargin — Measurement function arguments
comma-separated list

Measurement function arguments, specified as a comma-separated list. These arguments
are the same ones that are passed into the measurement function specified by the
MeasurementFcn property. For example, if you set MeasurementFcn to @cameas, and
then call

[xcorr,Pcorr] = correct(filter,frame,sensorpos,sensorvel)

the correct method will internally call

meas = cameas(state,frame,sensorpos,sensorvel)

.

Output Arguments
xcorr — Corrected state
real-valued M-element vector

Corrected state, returned as a real-valued M-element vector. The corrected state
represents the a posteriori estimate of the state vector, taking into account the current
measurement.

Pcorr — Corrected state error covariance matrix
positive-definite real-valued M-by-M matrix

Corrected state error covariance matrix, returned as a positive-definite real-valued M-by-
M matrix. The corrected state covariance matrix represents the a posteriori estimate of
the state covariance matrix, taking into account the current measurement.

Introduced in R2017a

 correct

4-239

distance
Class: trackingUKF

Distance from measurements to predicted measurement

Syntax
dist = distance(filter,zmat)
dist = distance(filter,zmat,measurementParams)

Description
dist = distance(filter,zmat) computes the Mahalanobis distances between
multiple candidate measurements of an object, zmat, and the predicted measurement
computed by the trackingUKF object. The distance method is used to assign
measurements to tracks.

This distance computation takes into account the covariance of the predicted state and
the covariance of the process noise. You can call the distance method only after calling
the predict method.

dist = distance(filter,zmat,measurementParams) also specifies the parameters
used by the measurement function set in the MeasurementFcn property.

Input Arguments
filter — Unscented Kalman filter
trackingUKFobject

Unscented Kalman filter, specified as a trackingUKF object.
Example: filter = trackingUKF

zmat — Object measurements
real-valued K-by-N matrix

4 Objects in Automated Driving System Toolbox

4-240

Measurements, specified as a real-valued K-by-N matrix. K is the number of candidate
measurement vectors. Each row corresponds to a candidate measurement vector.N is the
number of rows in the output of the function specified by the MeasurementFcn property.
Example: [2,1;3,0]
Data Types: double

measurementParams — Measurement function parameters
{} (default) | cell array

Measurement function parameters, specified as a cell array containing arguments to the
measurement function specified by the MeasurementFcn property. Suppose you set
MeasurementFcn to @cameas, and then set these values:

measurementParams = {frame,sensorpos,sensorpos)

The distance method internally calls the following:

cameas(state,frame,sensorpos,sensorvel)

Data Types: cell

Output Arguments
dist — Mahalanobis distances
real-valued K-element vector of positive values

Mahalanobis distances between candidate measurements and the predicted
measurement, returned as a real-valued K-element vector of positive values. There is one
distance value per measurement vector.
Data Types: double

Introduced in R2017a

 distance

4-241

predict
Class: trackingUKF

Predict unscented Kalman state vector and state error covariance matrix

Syntax
[xpred,Ppred] = predict(filter)
[xpred,Ppred] = predict(filter,varargin)
[xpred,Ppred] = predict(___ ,dt)

Description
[xpred,Ppred] = predict(filter) returns the predicted state vector, xpred, and
state error covariance matrix, Ppred, at the next time step based on the current time
step. The predicted values overwrite the internal state vector and state error covariance
matrix of the unscented Kalman filter.

[xpred,Ppred] = predict(filter,varargin) specifies in varargin input
arguments of the state transition function set in the StateTransitionFcn property.

[xpred,Ppred] = predict(___ ,dt) also specifies the time step, dt.

Input Arguments
filter — Unscented Kalman filter
trackingUKF object

Unscented Kalman filter, specified as a trackingUKF object.
Example: filter = trackingUKF

varargin — State transition function arguments
comma-separated list

4 Objects in Automated Driving System Toolbox

4-242

State transition function arguments, specified as a comma-separated list. These
arguments are the same ones that are passed into the state transition function specified
by the StateTransitionFcn property. For example, if you set the
StateTransitionFcn property to @constacc, and then call

[xpred,Ppred] = predict(filter,dt)

the predict method will internally call

state = constacc(state,dt)

dt — Time step
positive scalar

Time step, specified as a positive scalar. Units are in seconds.
Data Types: double

Output Arguments
xpred — Predicted state
real-valued M-element vector

Predicted state, returned as a real-valued M-element vector. The predicted state
represents the a priori estimate of the state vector propagated from the previous state.
The prediction uses the state transition function specified in the StateTransitionFcn
property.
Data Types: double

Ppred — Predicted state error covariance matrix
real-valued M-by-M matrix

Predicted state error covariance matrix, returned as a real-valued M-by-M matrix. This
predicted error is the a priori estimate of the state error covariance matrix. predict
uses the state transition function Jacobian specified in the
StateTransitionJacobianFcn property.
Data Types: double

Introduced in R2017a

 predict

4-243

initialize
Class: trackingUKF

Initialize unscented Kalman filter

Syntax
initialize(filter,X,P)
initialize(filter,X,P,Name,Value)

Description
initialize(filter,X,P) initializes the unscented Kalman filter, filter, using the
state, X, and the state covariance, P.

initialize(filter,X,P,Name,Value) initializes the Kalman filter properties using
name-value pairs.

Note: you cannot change the size or type of properties you are initializing.

Input Arguments
filter — Unscented Kalman tracking filter
Unscented Kalman filter object

Kalman tracking filter, specified as an unscented Kalman filter object.

X — Initial unscented Kalman filter state
vector | matrix

Initial unscented Kalman filter state, specified as a vector or matrix.

P — Initial unscented Kalman filter state covariance
matrix

4 Objects in Automated Driving System Toolbox

4-244

Initial unscented Kalman filter state covariance, specified as a matrix.

Introduced in R2018b

 initialize

4-245

likelihood
Class: trackingUKF

Measurement likelihood

Syntax
measlikelihood = likelihood(filter,zmeas)
measlikelihood = likelihood(filter,zmeas,measparams)

Description
measlikelihood = likelihood(filter,zmeas) returns the likelihood of the
measurement, zmeas, of an object tracked by the unscented Kalman filter, filter.

measlikelihood = likelihood(filter,zmeas,measparams) also specifies
measurement parameters, measparams.

Input Arguments
filter — Unscented Kalman tracking filter
Unscented Kalman filter object

Unscented Kalman tracking filter, specified as an unscented Kalman filter object.

zmeas — Measurement of tracked object
vector | matrix

Measurement of the tracked object, specified as a vector or matrix.

measparams — Parameters for measurement function
{} | cell array

4 Objects in Automated Driving System Toolbox

4-246

Parameters for measurement function, specified as a cell array. The parameters are
passed to the measurement function defined in the MeasurementFcn property of the
unscented Kalman filter, filter.

Output Arguments
measlikelihood — Likelihood of measurement
scalar

Likelihood of measurement, returned as a scalar.

Introduced in R2018a

 likelihood

4-247

residual
Class: trackingUKF

Measurement residual and residual covariance

Syntax
[zres,rescov] = residual(filterobj,zmeas)

Description
[zres,rescov] = residual(filterobj,zmeas)computes the residual, zres,
between a measurement, zmeas, and a predicted measurement produced by the Kalman
filter, filterobj. The function also returns the covariance of the residual, zres.

Input Arguments
filterobj — Unscented Kalman tracking filter
Kalman filter object

Unscented Kalman tracking filter, specified as a Kalman filter object.

zmeas — Measurement of tracked object
vector | matrix

Measurement of the tracked object, specified as a vector or matrix.

Output Arguments
zres — Residual between measurement and predicted measurement
matrix

Residual between measurement and predicted measurement, returned as a matrix.

4 Objects in Automated Driving System Toolbox

4-248

rescov — Covariance of residuals
matrix

Covariance of the residuals, returned as a matrix.

Algorithms
• The residual is the difference between a measurement and the value predicted by the
filter. The residual d is defined as d = z - h(x). h is the measurement function set by the
MeasurementFcn property, x is the current filter state, and z is the current
measurement.

• The covariance of the residual, S, is computed as S = R + Rp. Rp is the state
covariance matrix projected onto the measurement space and R is the measurement
noise matrix set by the MeasurementNoise property.

Introduced in R2018a

 residual

4-249

objectDetection class
Create object detection report

Description
The objectDetection class creates and reports detections of objects in a driving
scenario. Each report contains information obtained by a sensor for a single object. You
can use the objectDetection output as the input to a tracker such as
multiObjectTracker.

Construction
detection = objectDetection(time,measurement) creates an object detection
at the specified time from the specified measurement.

detection = objectDetection(___ ,Name,Value) creates a detection object
with properties specified as one or more Name,Value pair arguments. Any unspecified
properties have default values. You cannot specify the Time or Measurement properties
using Name,Value pairs.

Input Arguments
time — Detection time
nonnegative real scalar

Detection time, specified as a nonnegative real scalar. This argument sets the Time
property.

measurement — Object measurement
real-valued N-element vector

Object measurement, specified as a real-valued N-element vector. The dimension N is
determined by the type of measurement. For example, a measurement of the Cartesian
coordinates implies that N = 3. A measurement of spherical coordinates and range rate
implies that N = 4. This argument sets the Measurement property.

4 Objects in Automated Driving System Toolbox

4-250

Output Arguments
detection — Detection report
objectDetection class object

Detection report, returned as an objectDetection class object. An objectDetection
class object contains these properties:

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
MeasurementParameters Parameters used by initialization functions

of nonlinear Kalman tracking filters
ObjectAttributes Additional information passed to tracker

Properties
Time — Detection time
nonnegative real scalar

Detection time, specified as a nonnegative real scalar. You cannot set this property as a
name-value pair. Use the time input argument.
Example: 5.0
Data Types: double

Measurement — Object measurement
real-valued N-element vector

Object measurement, specified as a real-valued N-element vector. You cannot set this
property as a name-value pair. Use the measurement input argument.
Example: [1.0;-3.4]
Data Types: double | single

 objectDetection class

4-251

MeasurementNoise — Measurement noise covariance
scalar | real positive semi-definite symmetric N-by-N matrix

Measurement noise covariance, specified as a scalar or a real positive semi-definite
symmetric N-by-N matrix. N is the number of elements in the measurement vector. For
the scalar case, the matrix is a square diagonal N-by-N matrix having the same data
interpretation as the measurement.
Example: [5.0,1.0;1.0,10.0]
Data Types: double | single

SensorIndex — Sensor identifier
1 | positive integer

Sensor identifier, specified as a positive integer. The sensor identifier lets you distinguish
between different sensors and must be unique to the sensor.
Example: 5
Data Types: double

ObjectClassID — Object class identifier
0 (default) | positive integer

Object class identifier, specified as a positive integer. Object class identifiers distinguish
between different kinds of objects. The value 0 denotes an unknown object type. If the
class identifier is nonzero, multiObjectTracker immediately creates a confirmed track
from the detection.
Example: 1
Data Types: double

MeasurementParameters — Measurement function parameters
{} (default) | cell array

Measurement function parameters, specified as a cell array. The cell array contains all the
arguments used by the measurement function specified by the MeasurementFcn
property of a nonlinear tracking filter such as trackingEKF or trackingUKF. Each cell
contains a single argument.
Example: {[1;0;0],'rectangular'}

ObjectAttributes — Object attributes
{} (default) | cell array

4 Objects in Automated Driving System Toolbox

4-252

Object attributes passed through the tracker, specified as a cell array. These attributes
are added to the output of the multiObjectTracker but not used by the tracker.
Example: {[10,20,50,100],'radar1'}

Examples

Create Detection From Position Measurement

Create a detection from a position measurement. The detection is made at a time stamp
of one second from a position measurement of [100;250;10] in cartesian coordinates.

detection = objectDetection(1,[100;250;10])

detection =
 objectDetection with properties:

 Time: 1
 Measurement: [3x1 double]
 MeasurementNoise: [3x3 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: {}
 ObjectAttributes: {}

Create Detection With Measurement Noise

Create an objectDetection from a time and position measurement. The detection is
made at a time of one second for an object position measurement of [100;250;10]. Add
measurement noise and set other properties using Name-Value pairs.

detection = objectDetection(1,[100;250;10],'MeasurementNoise',10, ...
 'SensorIndex',1,'ObjectAttributes',{'Example object',5})

detection =
 objectDetection with properties:

 Time: 1

 objectDetection class

4-253

 Measurement: [3x1 double]
 MeasurementNoise: [3x3 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: {}
 ObjectAttributes: {'Example object' [5]}

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
trackingEKF | trackingKF | trackingUKF

System Objects
multiObjectTracker | radarDetectionGenerator | visionDetectionGenerator

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-254

multiObjectTracker System object

Track objects using GNN assignment

Description
The multiObjectTracker System object initializes, confirms, predicts, corrects, and
deletes the tracks of moving objects. Inputs to the multi-object tracker are detection
reports generated by an objectDetection object, radarDetectionGenerator object,
or visionDetectionGenerator object. The multi-object tracker accepts detections
from multiple sensors and assigns them to tracks using a global nearest neighbor (GNN)
criterion. Each detection is assigned to a separate track. If the detection cannot be
assigned to any track, based on the AssignmentThreshold property, the tracker creates
a new track. The tracks are returned in a structure array.

A new track starts in a tentative state. If enough detections are assigned to a tentative
track, its status changes to confirmed. If the detection is a known classification (the
ObjectClassID field of the returned track is nonzero), that track can be confirmed
immediately. For details on the multi-object tracker properties used to confirm tracks, see
“Algorithms” on page 4-271.

When a track is confirmed, the multi-object tracker considers that track to represent a
physical object. If detections are not added to the track within a specifiable number of
updates, the track is deleted.

The tracker also estimates the state vector and state vector covariance matrix for each
track using a Kalman filter. These state vectors are used to predict a track's location in
each frame and determine the likelihood of each detection being assigned to each track.

To track objects using a multi-object tracker:

1 Create the multiObjectTracker object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

 multiObjectTracker System object

4-255

Creation

Syntax
tracker = multiObjectTracker
tracker = multiObjectTracker(Name,Value)

Description
tracker = multiObjectTracker creates a multiObjectTracker System objectwith
default property values.

tracker = multiObjectTracker(Name,Value) sets properties for the multi-object
tracker using one or more name-value pairs. For example,
multiObjectTracker('FilterInitializationFcn',@initcvukf,'MaxNumTrack
s',100) creates a multi-object tracker that uses a constant-velocity, unscented Kalman
filter and maintains a maximum of 100 tracks. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

FilterInitializationFcn — Kalman filter initialization function
@initcvkf (default) | function handle | character vector | string scalar

Kalman filter initialization function, specified as a function handle or as a character vector
or string scalar of the name of a valid Kalman filter initialization function.

Automated Driving System Toolbox supplies several initialization functions that you can
use to specify FilterInitializationFcn.

4 Objects in Automated Driving System Toolbox

4-256

Initialization Function Function Definition
initcvekf Initialize constant-velocity extended

Kalman filter.
initcvkf Initialize constant-velocity linear Kalman

filter.
initcvukf Initialize constant-velocity unscented

Kalman filter.
initcaekf Initialize constant-acceleration extended

Kalman filter.
initcakf Initialize constant-acceleration linear

Kalman filter.
initcaukf Initialize constant-acceleration unscented

Kalman filter.
initctekf Initialize constant-turnrate extended

Kalman filter.
initctukf Initialize constant-turnrate unscented

Kalman filter.

You can also write your own initialization function. The input to this function must be a
detection report created by objectDetection. The output of this function must be an
object belonging to one of the Kalman filter classes: trackingKF, trackingEKF, or
trackingUKF. To guide you in writing this function, you can examine the details of the
supplied functions from within MATLAB. For example:

type initcvkf

Data Types: function_handle | char | string

AssignmentThreshold — Detection assignment threshold
30 (default) | positive scalar

Detection assignment threshold, specified as a positive scalar. To assign a detection to a
track, the detection's normalized distance from the track must be less than the
assignment threshold. If some detections remain unassigned to tracks that you want them
assigned to, increase the threshold. If some detections are assigned to incorrect tracks,
decrease the threshold.
Data Types: double

 multiObjectTracker System object

4-257

ConfirmationParameters — Confirmation parameters for track creation
[2 3] (default) | two-element vector of positive increasing integers

Confirmation parameters for track creation, specified as a two-element vector of positive
increasing integers, [M N], where M is less than N. A track is confirmed when at least M
detections are assigned to the track during the first N updates after track initialization.

• When setting M, take into account the probability of object detection for the sensors.
The probability of detection depends on factors such as occlusion or clutter. You can
reduce M when tracks fail to be confirmed or increase M when too many false
detections are assigned to tracks.

• When setting N, consider the number of times you want the tracker to update before it
makes a confirmation decision. For example, if a tracker updates every 0.05 seconds,
and you allow 0.5 seconds to make a confirmation decision, set N = 10.

Example: [3 5]
Data Types: double

NumCoastingUpdates — Coasting threshold for track deletion
5 (default) | positive integer

Coasting threshold for track deletion, specified as a positive integer. A track coasts when
no detections are assigned to that confirmed track after one or more prediction steps. If
the number of coasting steps exceeds this coasting threshold, the object deletes the track.
Data Types: double

MaxNumTracks — Maximum number of tracks
200 (default) | positive integer

Maximum number of tracks that the tracker can maintain, specified as a positive integer.
Data Types: double

MaxNumSensors — Maximum number of sensors
20 (default) | positive integer

Maximum number of sensors that can be connected to the tracker, specified as a positive
integer.

When you specify detections as input to the multi-object tracker,

4 Objects in Automated Driving System Toolbox

4-258

MaxNumSensors must be greater than or equal to the highest SensorIndex value in the
detections cell array of objectDetection objects used to update the multi-object
tracker. This property determines how many sets of ObjectAttributes fields each
output track can have.
Data Types: double

HasCostMatrixInput — Enable cost matrix input
false (default) | true

Enable a cost matrix as input to the multiObjectTracker System object or to the
updateTracks function, specified as false or true.
Data Types: logical

NumTracks — Number of tracks maintained by multi-object tracker
nonnegative integer

This property is read-only.

Number of tracks maintained by the multi-object tracker, specified as a nonnegative
integer.
Data Types: double

NumConfirmedTracks — Number of confirmed tracks
nonnegative integer

This property is read-only.

Number of confirmed tracks, specified as a nonnegative integer. The IsConfirmed fields
of the output track structures indicate which tracks are confirmed.
Data Types: double

Usage
To update tracks, call the created multi-object tracker with arguments, as if it were a
function (described here). Alternatively, update tracks by using the updateTracks
function, specifying the multi-object tracker as an input argument.

 multiObjectTracker System object

4-259

Syntax
confirmedTracks = tracker(detections,time)
[confirmedTracks,tentativeTracks] = tracker(detections,time)
[confirmedTracks,tentativeTracks,allTracks] = tracker(detections,
time)
[___] = tracker(detections,time,costMatrix)

Description
confirmedTracks = tracker(detections,time) creates, updates, and deletes
tracks in the multi-object tracker and returns details about the confirmed tracks. Updates
are based on the specified list of detections, and all tracks are updated to the specified
time. Each element in the returned confirmedTracks structure array corresponds to a
single track.

[confirmedTracks,tentativeTracks] = tracker(detections,time) also
returns a structure array containing details about the tentative tracks.

[confirmedTracks,tentativeTracks,allTracks] = tracker(detections,
time) also returns a structure array containing details about all the confirmed and
tentative tracks, allTracks. The tracks are returned in the order by which the tracker
internally maintains them. You can use this output to help you calculate the cost matrix,
an optional input argument.

[___] = tracker(detections,time,costMatrix) specifies a cost matrix,
returning any of the outputs from preceding syntaxes.

To specify a cost matrix, set the HasCostMatrixInput property of the
multiObjectTracker System object to true.

Input Arguments
detections — Detection list
cell array of objectDetection objects

Detection list, specified as a cell array of objectDetection objects. The Time property
value of each objectDetection object must be less than or equal to the current time of
update, time, and greater than the previous time value used to update the multi-object
tracker.

4 Objects in Automated Driving System Toolbox

4-260

time — Time of update
scalar

Time of update, specified as a scalar. The multi-object tracker updates all tracks to this
time. Units are in seconds.

time must be greater than or equal to the largest Time property value of the
objectDetection objects in the input detections list. time must increase in value
with each update to the multi-object tracker.
Data Types: double

costMatrix — Cost matrix
NT-by-ND matrix

Cost matrix, specified as a real-valued NT-by-ND matrix, where NT is the number of
existing tracks, and ND is the number of current detections. The rows of the cost matrix
correspond to the existing tracks. The columns correspond to the detections. Tracks are
ordered as they appear in the list of tracks in the allTracks output argument of the
previous update to the multi-object tracker.

In the first update to the multi-object tracker, or when the multi-object tracker has no
previous tracks, assign the cost matrix a size of [0, ND]. The cost must be calculated so
that lower costs indicate a higher likelihood that the multi-object tracker assigns a
detection to a track. To prevent certain detections from being assigned to certain tracks,
use Inf.

Dependencies

To enable specification of the cost matrix when updating tracks, set the
HasCostMatrixInput property of the multi-object tracker to true
Data Types: double

Output Arguments
confirmedTracks — Confirmed tracks
structure array

Confirmed tracks, returned as a structure array with these fields.

 multiObjectTracker System object

4-261

Field Definition
TrackID Unique track identifier.
Time Time at which the track is updated. Units

are in seconds.
Age Number of updates since track

initialization.
State Updated state vector. The state vector is

specific to each type of Kalman filter.
StateCovariance Updated state covariance matrix. The

covariance matrix is specific to each type of
Kalman filter.

IsConfirmed Confirmation status. This field is true if the
track is confirmed to be a real target.

IsCoasted Coasting status. This field is true if the
track is updated without a new detection.

ObjectClassID Integer value representing the object
classification. The value 0 represents an
unknown classification. Nonzero
classifications apply only to confirmed
tracks.

ObjectAttributes Cell array of object attributes reported by
the sensor making the detection.

A track is confirmed if:

• At least M detections are assigned to the track during the first N updates after track
initialization. To specify the values [M N], use the ConfirmationParameters
property of the multi-object tracker.

• The objectDetection object initiating the track has an ObjectClassID greater
than zero.

tentativeTracks — Tentative tracks
structure array

Tentative tracks, returned as a structure array with these fields.

4 Objects in Automated Driving System Toolbox

4-262

Field Definition
TrackID Unique track identifier.
Time Time at which the track is updated. Units

are in seconds.
Age Number of updates since track

initialization.
State Updated state vector. The state vector is

specific to each type of Kalman filter.
StateCovariance Updated state covariance matrix. The

covariance matrix is specific to each type of
Kalman filter.

IsConfirmed Confirmation status. This field is true if the
track is confirmed to be a real target.

IsCoasted Coasting status. This field is true if the
track is updated without a new detection.

ObjectClassID Integer value representing the object
classification. The value 0 represents an
unknown classification. Nonzero
classifications apply only to confirmed
tracks.

ObjectAttributes Cell array of object attributes reported by
the sensor making the detection.

A track is tentative before it is confirmed.

allTracks — All confirmed and tentative tracks
structure array

All confirmed and tentative tracks, returned as a structure array with these fields.

Field Definition
TrackID Unique track identifier.
Time Time at which the track is updated. Units

are in seconds.

 multiObjectTracker System object

4-263

Field Definition
Age Number of updates since track

initialization.
State Updated state vector. The state vector is

specific to each type of Kalman filter.
StateCovariance Updated state covariance matrix. The

covariance matrix is specific to each type of
Kalman filter.

IsConfirmed Confirmation status. This field is true if the
track is confirmed to be a real target.

IsCoasted Coasting status. This field is true if the
track is updated without a new detection.

ObjectClassID Integer value representing the object
classification. The value 0 represents an
unknown classification. Nonzero
classifications apply only to confirmed
tracks.

ObjectAttributes Cell array of object attributes reported by
the sensor making the detection.

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to multiObjectTracker
isLocked Determine if System object is in use
getTrackFilterProperties Obtain filter properties of track from multi-object tracker
setTrackFilterProperties Set filter properties of track from multi-object tracker
updateTracks Update multi-object tracker with new detections

Common to All System Objects
step Run System object algorithm

4 Objects in Automated Driving System Toolbox

4-264

release Release resources and allow changes to System object property values and
input characteristics

reset Reset internal states of System object

Examples

Track Single Object Using Multi-Object Tracker

Create a multiObjectTracker System object™ using the default filter initialization
function for a 2-D constant-velocity model. For this motion model, the state vector is
[x;vx;y;vy].

tracker = multiObjectTracker('ConfirmationParameters',[4 5], ...
 'NumCoastingUpdates',10);

Create a detection by specifying an objectDetection object. To use this detection with
the multi-object tracker, enclose the detection in a cell array.

dettime = 1.0;
det = { ...
 objectDetection(dettime,[10; -1], ...
 'SensorIndex',1, ...
 'ObjectAttributes',{'ExampleObject',1}) ...
 };

Update the multi-object tracker with this detection. The time at which you update the
multi-object tacker must be greater than or equal to the time at which the object was
detected.

updatetime = 1.25;
[confirmedTracks,tentativeTracks,allTracks] = tracker(det,updatetime);

Create another detection of the same object and update the multi-object tracker. The
tracker maintains only one track.

dettime = 1.5;
det = { ...
 objectDetection(dettime,[10.1; -1.1], ...
 'SensorIndex',1, ...
 'ObjectAttributes',{'ExampleObject',1}) ...
 };

 multiObjectTracker System object

4-265

updatetime = 1.75;
[confirmedTracks,tentativeTracks,allTracks] = tracker(det,updatetime);

Determine whether the track has been verified by checking the number of confirmed
tracks.

numConfirmed = tracker.NumConfirmedTracks

numConfirmed = 0

Examine the position and velocity of the tracked object. Because the track has not been
confirmed, get the position and velocity from the tentativeTracks structure.

positionSelector = [1 0 0 0; 0 0 1 0];
velocitySelector = [0 1 0 0; 0 0 0 1];
position = getTrackPositions(tentativeTracks,positionSelector)

position = 1×2

 10.1426 -1.1426

velocity = getTrackVelocities(tentativeTracks,velocitySelector)

velocity = 1×2

 0.1852 -0.1852

Confirm and Delete Track in Multi-Object Tracker

Create a sequence of detections of a moving object. Track the detections using a
multiObjectTracker System object™. Observe how the tracks switch from tentative to
confirmed and then to deleted.

Create a multi-object tracker using the initcakf filter initialization function. The tracker
models 2-D constant-acceleration motion. For this motion model, the state vector is
[x;vx;ax;y;vy;ay].

tracker = multiObjectTracker('FilterInitializationFcn',@initcakf, ...
 'ConfirmationParameters',[3 4],'NumCoastingUpdates',6);

4 Objects in Automated Driving System Toolbox

4-266

Create a sequence of detections of a moving target using objectDetection. To use
these detections with the multiObjectTracker, enclose the detections in a cell array.

dt = 0.1;
pos = [10; -1];
vel = [10; 5];
for detno = 1:2
 time = (detno-1)*dt;
 det = { ...
 objectDetection(time,pos, ...
 'SensorIndex',1, ...
 'ObjectAttributes',{'ExampleObject',1}) ...
 };
 [confirmedTracks,tentativeTracks,allTracks] = tracker(det,time);
 pos = pos + vel*dt;
 meas = pos;
end

Verify that the track has not been confirmed yet by checking the number of confirmed
tracks.

numConfirmed = tracker.NumConfirmedTracks

numConfirmed = 0

Because the track is not confirmed, get the position and velocity from the
tentativeTracks structure.

positionSelector = [1 0 0 0 0 0; 0 0 0 1 0 0];
velocitySelector = [0 1 0 0 0 0; 0 0 0 0 1 0];
position = getTrackPositions(tentativeTracks,positionSelector)

position = 1×2

 10.6669 -0.6665

velocity = getTrackVelocities(tentativeTracks,velocitySelector)

velocity = 1×2

 3.3473 1.6737

Add more detections to confirm the track.

 multiObjectTracker System object

4-267

for detno = 3:5
 time = (detno-1)*dt;
 det = { ...
 objectDetection(time,pos, ...
 'SensorIndex',1, ...
 'ObjectAttributes',{'ExampleObject',1}) ...
 };
 [confirmedTracks,tentativeTracks,allTracks] = tracker(det,time);
 pos = pos + vel*dt;
 meas = pos;
end

Verify that the track has been confirmed, and display the position and velocity vectors for
that track.

numConfirmed = tracker.NumConfirmedTracks

numConfirmed = 1

position = getTrackPositions(confirmedTracks,positionSelector)

position = 1×2

 13.8417 0.9208

velocity = getTrackVelocities(confirmedTracks,velocitySelector)

velocity = 1×2

 9.4670 4.7335

Let the tracker run but do not add new detections. The existing track is deleted.

for detno = 6:20
 time = (detno-1)*dt;
 det = {};
 [confirmedTracks,tentativeTracks,allTracks] = tracker(det,time);
 pos = pos + vel*dt;
 meas = pos;
end

Verify that the tracker has no tentative or confirmed tracks.

isempty(allTracks)

4 Objects in Automated Driving System Toolbox

4-268

ans = logical
 1

Generate Radar Detections of Multiple Vehicles

Generate detections using a forward-facing automotive radar mounted on an ego vehicle.
Assume that there are three targets:

• Vehicle 1 is in the center lane, directly in front of the ego vehicle, and driving at the
same speed.

• Vehicle 2 is in the left lane and driving faster than the ego vehicle by 12 kilometers per
hour.

• Vehicle 3 is in the right lane and driving slower than the ego vehicle by 5 kilometers
per hour.

All positions, velocities, and measurements are relative to the ego vehicle. Run the
simulation for ten steps.

dt = 0.1;
pos1 = [150 0 0];
pos2 = [160 10 0];
pos3 = [130 -10 0];
vel1 = [0 0 0];
vel2 = [12*1000/3600 0 0];
vel3 = [-5*1000/3600 0 0];
car1 = struct('ActorID',1,'Position',pos1,'Velocity',vel1);
car2 = struct('ActorID',2,'Position',pos2,'Velocity',vel2);
car3 = struct('ActorID',3,'Position',pos3,'Velocity',vel3);

Create an automotive radar sensor that is offset from the ego vehicle. By default, the
sensor location is at (3.4,0) meters from the vehicle center and 0.2 meters above the
ground plane. Turn off the range rate computation so that the radar sensor measures
position only.

radar = radarDetectionGenerator('DetectionCoordinates','Sensor Cartesian', ...
 'MaxRange',200,'RangeResolution',10,'AzimuthResolution',10, ...
 'FieldOfView',[40 15],'UpdateInterval',dt,'HasRangeRate',false);
tracker = multiObjectTracker('FilterInitializationFcn',@initcvkf, ...
 'ConfirmationParameters',[3 4],'NumCoastingUpdates',6);

 multiObjectTracker System object

4-269

Generate detections with the radar from the non-ego vehicles. The output detections form
a cell array and can be passed directly in to the multiObjectTracker.

simTime = 0;
nsteps = 10;
for k = 1:nsteps
 dets = radar([car1 car2 car3],simTime);
 [confirmedTracks,tentativeTracks,allTracks] = tracker(dets,simTime);

Move the cars one time step and update the multi-object tracker.

 simTime = simTime + dt;
 car1.Position = car1.Position + dt*car1.Velocity;
 car2.Position = car2.Position + dt*car2.Velocity;
 car3.Position = car3.Position + dt*car3.Velocity;
end

Use birdsEyePlot to create an overhead view of the detections. Plot the sensor
coverage area. Extract the X and Y positions of the targets by converting the
Measurement fields of the cell array into a MATLAB array. Display the detections on the
bird's-eye plot.

BEplot = birdsEyePlot('XLim',[0 220],'YLim',[-75 75]);
caPlotter = coverageAreaPlotter(BEplot,'DisplayName','Radar coverage area');
plotCoverageArea(caPlotter,radar.SensorLocation,radar.MaxRange, ...
 radar.Yaw,radar.FieldOfView(1))
detPlotter = detectionPlotter(BEplot,'DisplayName','Radar detections');
detPos = cellfun(@(d)d.Measurement(1:2),dets,'UniformOutput',false);
detPos = cell2mat(detPos')';
if ~isempty(detPos)
 plotDetection(detPlotter,detPos)
end

4 Objects in Automated Driving System Toolbox

4-270

Algorithms
When you pass detections into a multi-object tracker, the System object:

• Attempts to assign the input detections to existing tracks, using the
assignDetectionsToTracks function.

• Creates new tracks from unassigned detections.
• Updates already assigned tracks and possibly confirms them, based on the

ConfirmationParameters property of the multi-object tracker.

 multiObjectTracker System object

4-271

• Deletes tracks that have no assigned detections within the last NumCoastingUpdates
updates.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
• All the detections used with a multi-object tracker must have properties with the same

sizes and types.
• If you use the ObjectAttributes field within an objectDetection object, you

must specify this field as a cell containing a structure. The structure for all detections
must have the same fields and the values in these fields must always have the same
size and type. The form of the structure cannot change during simulation.

• If ObjectAttributes are contained in the detection, the SensorIndex value of the
detection cannot be greater than 10.

• The first update to the multi-object tracker must contain at least one detection.

See Also
Functions
assignDetectionsToTracks | getTrackPositions | getTrackVelocities

Classes
drivingScenario | objectDetection | trackingEKF | trackingKF | trackingUKF

System Objects
radarDetectionGenerator | visionDetectionGenerator

Topics
“Multiple Object Tracking Tutorial”

4 Objects in Automated Driving System Toolbox

4-272

“Track Multiple Vehicles Using a Camera”
“Track Pedestrians from a Moving Car”

Introduced in R2017a

 multiObjectTracker System object

4-273

getTrackFilterProperties
Obtain filter properties of track from multi-object tracker

Syntax
values = getTrackFilterProperties(tracker,trackID,property)
values = getTrackFilterProperties(tracker,
trackID,property1,...,propertyN)

Description
values = getTrackFilterProperties(tracker,trackID,property) returns the
tracking filter property values for a specific track within a multi-object tracker. trackID
is the ID of that specific track.

values = getTrackFilterProperties(tracker,
trackID,property1,...,propertyN) returns multiple property values. You can
specify the properties in any order.

Examples

Display and Set Tracking Filter Properties in Multi-Object Tracker

Create a multiObjectTracker System object™ using a constant-acceleration, linear
Kalman filter for all tracks.

tracker = multiObjectTracker('FilterInitializationFcn',@initcakf, ...
 'ConfirmationParameters',[4 5],'NumCoastingUpdates',9);

Create two detections and generate tracks for these detections.

detection1 = objectDetection(1.0,[10; 10]);
detection2 = objectDetection(1.0,[1000; 1000]);
[~,tracks] = tracker([detection1 detection2],1.1)

4 Objects in Automated Driving System Toolbox

4-274

tracks = 2x1 struct array with fields:
 TrackID
 Time
 Age
 State
 StateCovariance
 IsConfirmed
 IsCoasted
 ObjectClassID
 ObjectAttributes

Get filter property values for the first track. Display the process noise values.

values = getTrackFilterProperties(tracker,1,'MeasurementNoise','ProcessNoise','MotionModel');
values{2}

ans = 6×6

 0.0000 0.0005 0.0050 0 0 0
 0.0005 0.0100 0.1000 0 0 0
 0.0050 0.1000 1.0000 0 0 0
 0 0 0 0.0000 0.0005 0.0050
 0 0 0 0.0005 0.0100 0.1000
 0 0 0 0.0050 0.1000 1.0000

Set new values for this property by doubling the process noise for the first track. Display
the updated process noise values.

setTrackFilterProperties(tracker,1,'ProcessNoise',2*values{2});
values = getTrackFilterProperties(tracker,1,'ProcessNoise');
values{1}

ans = 6×6

 0.0001 0.0010 0.0100 0 0 0
 0.0010 0.0200 0.2000 0 0 0
 0.0100 0.2000 2.0000 0 0 0
 0 0 0 0.0001 0.0010 0.0100
 0 0 0 0.0010 0.0200 0.2000
 0 0 0 0.0100 0.2000 2.0000

 getTrackFilterProperties

4-275

Input Arguments
tracker — Multi-object tracker
multiObjectTracker System object

Multi-object tracker, specified as a multiObjectTracker System object.

trackID — Track ID
positive integer

Track ID, specified as a positive integer. trackID must be a valid track in tracker.

property — Tracking filter property
character vector | string scalar

Tracking filter property to return values for, specified as a character vector or string
scalar. property must be a valid property of the tracking filter used by tracker. Valid
tracking filters are trackingKF, trackingEKF, and trackingUKF.

You can specify additional properties in any order.
Example: 'MeasurementNoise','ProcessNoise'
Data Types: char | string

Output Arguments
values — Tracking filter property values
cell array

Tracking filter property values, returned as a cell array. Each element in the cell array
corresponds to the values of a specified property. getTrackFilterProperties returns
the values in the same order in which you specified the corresponding properties.

See Also
System Objects
multiObjectTracker

4 Objects in Automated Driving System Toolbox

4-276

Classes
trackingEKF | trackingKF | trackingUKF

Functions
setTrackFilterProperties | updateTracks

Introduced in R2017a

 getTrackFilterProperties

4-277

setTrackFilterProperties
Set filter properties of track from multi-object tracker

Syntax
setTrackFilterProperties(tracker,trackID,property,value)
setTrackFilterProperties(tracker,trackID,property1,
value1,...,propertyN,valueN)

Description
setTrackFilterProperties(tracker,trackID,property,value) sets the
specified tracking filter property to the indicated value for a specific track within the
multi-object tracker. trackID is the ID of that specific track.

setTrackFilterProperties(tracker,trackID,property1,
value1,...,propertyN,valueN) sets multiple property values. You can specify the
property-value pairs in any order.

Examples

Display and Set Tracking Filter Properties in Multi-Object Tracker

Create a multiObjectTracker System object™ using a constant-acceleration, linear
Kalman filter for all tracks.

tracker = multiObjectTracker('FilterInitializationFcn',@initcakf, ...
 'ConfirmationParameters',[4 5],'NumCoastingUpdates',9);

Create two detections and generate tracks for these detections.

detection1 = objectDetection(1.0,[10; 10]);
detection2 = objectDetection(1.0,[1000; 1000]);
[~,tracks] = tracker([detection1 detection2],1.1)

4 Objects in Automated Driving System Toolbox

4-278

tracks = 2x1 struct array with fields:
 TrackID
 Time
 Age
 State
 StateCovariance
 IsConfirmed
 IsCoasted
 ObjectClassID
 ObjectAttributes

Get filter property values for the first track. Display the process noise values.

values = getTrackFilterProperties(tracker,1,'MeasurementNoise','ProcessNoise','MotionModel');
values{2}

ans = 6×6

 0.0000 0.0005 0.0050 0 0 0
 0.0005 0.0100 0.1000 0 0 0
 0.0050 0.1000 1.0000 0 0 0
 0 0 0 0.0000 0.0005 0.0050
 0 0 0 0.0005 0.0100 0.1000
 0 0 0 0.0050 0.1000 1.0000

Set new values for this property by doubling the process noise for the first track. Display
the updated process noise values.

setTrackFilterProperties(tracker,1,'ProcessNoise',2*values{2});
values = getTrackFilterProperties(tracker,1,'ProcessNoise');
values{1}

ans = 6×6

 0.0001 0.0010 0.0100 0 0 0
 0.0010 0.0200 0.2000 0 0 0
 0.0100 0.2000 2.0000 0 0 0
 0 0 0 0.0001 0.0010 0.0100
 0 0 0 0.0010 0.0200 0.2000
 0 0 0 0.0100 0.2000 2.0000

 setTrackFilterProperties

4-279

Input Arguments
tracker — Multi-object tracker
multiObjectTracker System object

Multi-object tracker, specified as a multiObjectTracker System object.

trackID — Track ID
positive integer

Track ID, specified as a positive integer. trackID must be a valid track in tracker.

property — Tracking filter property
character vector | string scalar

Tracking filter property to set values for, specified as a character vector or string scalar.
property must be a valid property of the tracking filter used by tracker. Valid tracking
filters are trackingKF, trackingEKF, and trackingUKF.

You can specify additional property-value pairs in any order.
Example: 'MeasurementNoise',eye(2,2),'MotionModel','2D Constant
Acceleration'

Data Types: char | string

value — Value to set tracking filter property to
valid MATLAB expression

Value to set the corresponding tracking filter property to, specified as a MATLAB
expression. value must be a valid value of the corresponding property.

You can specify additional property-value pairs in any order.
Example: 'MeasurementNoise',eye(2,2),'MotionModel','2D Constant
Acceleration'

See Also
System Objects
multiObjectTracker

4 Objects in Automated Driving System Toolbox

4-280

Classes
trackingEKF | trackingKF | trackingUKF

Functions
getTrackFilterProperties | updateTracks

Introduced in R2017a

 setTrackFilterProperties

4-281

updateTracks
Update multi-object tracker with new detections

Syntax
confirmedTracks = updateTracks(tracker,detections,time)
[confirmedTracks,tentativeTracks] = updateTracks(tracker,detections,
time)
[confirmedTracks,tentativeTracks,allTracks] = updateTracks(tracker,
detections,time)
[___] = updateTracks(tracker,detections,time,costMatrix)

Description
confirmedTracks = updateTracks(tracker,detections,time) creates, updates,
and deletes tracks in the multiObjectTracker System object, tracker. Updates are
based on the specified list of detections, and all tracks are updated to the specified
time. Each element in the returned confirmedTracks structure array corresponds to a
single track.

[confirmedTracks,tentativeTracks] = updateTracks(tracker,detections,
time) also returns a structure array containing details about the tentative tracks.

[confirmedTracks,tentativeTracks,allTracks] = updateTracks(tracker,
detections,time) also returns a structure array containing details about all confirmed
and tentative tracks, allTracks. The tracks are returned in the order by which the
tracker internally maintains them. You can use this output to help you calculate the cost
matrix, an optional input argument.

[___] = updateTracks(tracker,detections,time,costMatrix) specifies a cost
matrix, returning any of the outputs from preceding syntaxes.

To specify a cost matrix, set the HasCostMatrixInput property of tracker to true.

4 Objects in Automated Driving System Toolbox

4-282

Examples

Generate Radar Detections of Multiple Vehicles

Generate detections using a forward-facing automotive radar mounted on an ego vehicle.
Assume that there are three targets:

• Vehicle 1 is in the center lane, directly in front of the ego vehicle, and driving at the
same speed.

• Vehicle 2 is in the left lane and driving faster than the ego vehicle by 12 kilometers per
hour.

• Vehicle 3 is in the right lane and driving slower than the ego vehicle by 5 kilometers
per hour.

All positions, velocities, and measurements are relative to the ego vehicle. Run the
simulation for ten steps.

dt = 0.1;
pos1 = [150 0 0];
pos2 = [160 10 0];
pos3 = [130 -10 0];
vel1 = [0 0 0];
vel2 = [12*1000/3600 0 0];
vel3 = [-5*1000/3600 0 0];
car1 = struct('ActorID',1,'Position',pos1,'Velocity',vel1);
car2 = struct('ActorID',2,'Position',pos2,'Velocity',vel2);
car3 = struct('ActorID',3,'Position',pos3,'Velocity',vel3);

Create an automotive radar sensor that is offset from the ego vehicle. By default, the
sensor location is at (3.4,0) meters from the vehicle center and 0.2 meters above the
ground plane. Turn off the range rate computation so that the radar sensor measures
position only.

radar = radarDetectionGenerator('DetectionCoordinates','Sensor Cartesian', ...
 'MaxRange',200,'RangeResolution',10,'AzimuthResolution',10, ...
 'FieldOfView',[40 15],'UpdateInterval',dt,'HasRangeRate',false);
tracker = multiObjectTracker('FilterInitializationFcn',@initcvkf, ...
 'ConfirmationParameters',[3 4],'NumCoastingUpdates',6);

Generate detections with the radar from the non-ego vehicles. The output detections form
a cell array and can be passed directly in to the multiObjectTracker.

 updateTracks

4-283

simTime = 0;
nsteps = 10;
for k = 1:nsteps
 dets = radar([car1 car2 car3],simTime);
 [confirmedTracks,tentativeTracks,allTracks] = updateTracks(tracker,dets,simTime);

Move the cars one time step and update the multi-object tracker.

 simTime = simTime + dt;
 car1.Position = car1.Position + dt*car1.Velocity;
 car2.Position = car2.Position + dt*car2.Velocity;
 car3.Position = car3.Position + dt*car3.Velocity;
end

Use birdsEyePlot to create an overhead view of the detections. Plot the sensor
coverage area. Extract the X and Y positions of the targets by converting the
Measurement fields of the cell array into a MATLAB array. Display the detections on the
bird's-eye plot.

BEplot = birdsEyePlot('XLim',[0 220],'YLim',[-75 75]);
caPlotter = coverageAreaPlotter(BEplot,'DisplayName','Radar coverage area');
plotCoverageArea(caPlotter,radar.SensorLocation,radar.MaxRange, ...
 radar.Yaw,radar.FieldOfView(1))
detPlotter = detectionPlotter(BEplot,'DisplayName','Radar detections');
detPos = cellfun(@(d)d.Measurement(1:2),dets,'UniformOutput',false);
detPos = cell2mat(detPos')';
if ~isempty(detPos)
 plotDetection(detPlotter,detPos)
end

4 Objects in Automated Driving System Toolbox

4-284

Input Arguments
tracker — Multi-object tracker
multiObjectTracker System object

Multi-object tracker, specified as a multiObjectTracker System object.

detections — Detection list
cell array of objectDetection objects

Detection list, specified as a cell array of objectDetection objects. The Time property
value of each objectDetection object must be less than or equal to the current time of

 updateTracks

4-285

update, time, and greater than the previous time value used to update the multi-object
tracker.

time — Time of update
scalar

Time of update, specified as a scalar. The multi-object tracker updates all tracks to this
time. Units are in seconds.

time must be greater than or equal to the largest Time property value of the
objectDetection objects in the input detections list. time must increase in value
with each update to the multi-object tracker.
Data Types: double

costMatrix — Cost matrix
NT-by-ND matrix

Cost matrix, specified as a real-valued NT-by-ND matrix, where NT is the number of
existing tracks, and ND is the number of current detections. The rows of the cost matrix
correspond to the existing tracks. The columns correspond to the detections. Tracks are
ordered as they appear in the list of tracks in the allTracks output argument of the
previous update to the multi-object tracker.

In the first update to the multi-object tracker, or when the multi-object tracker has no
previous tracks, assign the cost matrix a size of [0, ND]. The cost must be calculated so
that lower costs indicate a higher likelihood that the multi-object tracker assigns a
detection to a track. To prevent certain detections from being assigned to certain tracks,
use Inf.

Dependencies

To enable specification of the cost matrix when updating tracks, set the
HasCostMatrixInput property of the multi-object tracker to true
Data Types: double

Output Arguments
confirmedTracks — Confirmed tracks
structure array

4 Objects in Automated Driving System Toolbox

4-286

Confirmed tracks, returned as a structure array with these fields.

Field Definition
TrackID Unique track identifier.
Time Time at which the track is updated. Units

are in seconds.
Age Number of updates since track

initialization.
State Updated state vector. The state vector is

specific to each type of Kalman filter.
StateCovariance Updated state covariance matrix. The

covariance matrix is specific to each type of
Kalman filter.

IsConfirmed Confirmation status. This field is true if the
track is confirmed to be a real target.

IsCoasted Coasting status. This field is true if the
track is updated without a new detection.

ObjectClassID Integer value representing the object
classification. The value 0 represents an
unknown classification. Nonzero
classifications apply only to confirmed
tracks.

ObjectAttributes Cell array of object attributes reported by
the sensor making the detection.

A track is confirmed if:

• At least M detections are assigned to the track during the first N updates after track
initialization. To specify the values [M N], use the ConfirmationParameters
property of the multi-object tracker.

• The objectDetection object initiating the track has an ObjectClassID greater
than zero.

tentativeTracks — Tentative tracks
structure array

Tentative tracks, returned as a structure array with these fields.

 updateTracks

4-287

Field Definition
TrackID Unique track identifier.
Time Time at which the track is updated. Units

are in seconds.
Age Number of updates since track

initialization.
State Updated state vector. The state vector is

specific to each type of Kalman filter.
StateCovariance Updated state covariance matrix. The

covariance matrix is specific to each type of
Kalman filter.

IsConfirmed Confirmation status. This field is true if the
track is confirmed to be a real target.

IsCoasted Coasting status. This field is true if the
track is updated without a new detection.

ObjectClassID Integer value representing the object
classification. The value 0 represents an
unknown classification. Nonzero
classifications apply only to confirmed
tracks.

ObjectAttributes Cell array of object attributes reported by
the sensor making the detection.

A track is tentative before it is confirmed.

allTracks — All confirmed and tentative tracks
structure array

All confirmed and tentative tracks, returned as a structure array with these fields.

Field Definition
TrackID Unique track identifier.
Time Time at which the track is updated. Units

are in seconds.

4 Objects in Automated Driving System Toolbox

4-288

Field Definition
Age Number of updates since track

initialization.
State Updated state vector. The state vector is

specific to each type of Kalman filter.
StateCovariance Updated state covariance matrix. The

covariance matrix is specific to each type of
Kalman filter.

IsConfirmed Confirmation status. This field is true if the
track is confirmed to be a real target.

IsCoasted Coasting status. This field is true if the
track is updated without a new detection.

ObjectClassID Integer value representing the object
classification. The value 0 represents an
unknown classification. Nonzero
classifications apply only to confirmed
tracks.

ObjectAttributes Cell array of object attributes reported by
the sensor making the detection.

Algorithms
When you pass detections into updateTracks, the function:

• Attempts to assign the input detections to existing tracks, using the
assignDetectionsToTracks function.

• Creates new tracks from unassigned detections.
• Updates already assigned tracks and possibly confirms them, based on the

ConfirmationParameters property of the multi-object tracker.
• Deletes tracks that have no assigned detections within the last NumCoastingUpdates

updates.

 updateTracks

4-289

See Also
Classes
objectDetection

System Objects
multiObjectTracker

Functions
getTrackFilterProperties | setTrackFilterProperties

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-290

parabolicLaneBoundary
Parabolic lane boundary model

Description
The parabolicLaneBoundary object contains information about a parabolic lane
boundary model.

Creation
To generate parabolic lane boundary models that fit a set of boundary points and an
approximate width, use the findParabolicLaneBoundaries function. If you already
know your parabolic parameters, create lane boundary models by using the
parabolicLaneBoundary function (described here).

Syntax
boundaries = parabolicLaneBoundary(parabolicParameters)

Description
boundaries = parabolicLaneBoundary(parabolicParameters) creates an array
of parabolic lane boundary models from an array of [A B C] parameters for the
parabolic equation y = Ax2 + Bx + C. Points within the lane boundary models are in world
coordinates.

Input Arguments
parabolicParameters — Coefficients for parabolic models
[A B C] numeric vector | matrix of [A B C] values

 parabolicLaneBoundary

4-291

Coefficients for parabolic models of the form y = Ax2 + Bx + C, specified as an [A B C]
numeric vector or as a matrix of [A B C] values. Each row of parabolicParameters
describes a separate parabolic lane boundary model.

Properties
Parameters — Coefficients for parabolic model
[A B C] numeric vector

Coefficients for a parabolic model of the form y = Ax2 + Bx + C, specified as an [A B C]
numeric vector.

BoundaryType — Type of boundary
LaneBoundaryType

Type of boundary, specified as a LaneBoundaryType of supported lane boundaries. The
supported lane boundary types are:

• Unmarked
• Solid
• Dashed
• BottsDots
• DoubleSolid

Specify a lane boundary type as LaneBoundaryType.BoundaryType. For example:

LaneBoundaryType.BottsDots

Strength — Strength of boundary model
numeric scalar

Strength of the boundary model, specified as a numeric scalar. Strength is the ratio of
the number of unique x-axis locations on the boundary to the length of the boundary
specified by the XExtent property. A solid line without any breaks has a higher strength
than a dotted line that has breaks along the full length of the boundary.

XExtent — Length of boundary along x-axis
[minX maxX] numeric vector

4 Objects in Automated Driving System Toolbox

4-292

Length of the boundary along the x-axis, specified as a [minX maxX] numeric vector that
describes the minimum and maximum x-axis locations.

Object Functions
computeBoundaryModel Obtain y-coordinates of lane boundaries given x-coordinates

Examples

Create Parabolic Lane Boundaries

Create left-lane and right-lane parabolic boundary models.

llane = parabolicLaneBoundary([-0.001 0.01 0.5]);
rlane = parabolicLaneBoundary([-0.001 0.01 -0.5]);

Create a bird's-eye plot and lane boundary plotter. Plot the lane boundaries.

bep = birdsEyePlot('XLimits',[0 30],'YLimits',[-5 5]);
lbPlotter = laneBoundaryPlotter(bep,'DisplayName','Lane boundaries');
plotLaneBoundary(lbPlotter, [llane rlane]);

 parabolicLaneBoundary

4-293

Find Parabolic Lane Boundaries in Bird's-Eye-View Image

Find lanes in an image by using parabolic lane boundary models. Overlay the identified
lanes on the original image and on a bird's-eye-view transformation of the image.

Load an image of a road with lanes. The image was obtained from a camera sensor
mounted on the front of a vehicle.

I = imread('road.png');

Transform the image into a bird's-eye-view image by using a preconfigured sensor object.
This object models the sensor that captured the original image.

4 Objects in Automated Driving System Toolbox

4-294

bevSensor = load('birdsEyeConfig');
birdsEyeImage = transformImage(bevSensor.birdsEyeConfig,I);
imshow(birdsEyeImage)

 parabolicLaneBoundary

4-295

4 Objects in Automated Driving System Toolbox

4-296

Set the approximate lane marker width in world units (meters).

approxBoundaryWidth = 0.25;

Detect lane features and display them as a black-and-white image.

birdsEyeBW = segmentLaneMarkerRidge(rgb2gray(birdsEyeImage), ...
 bevSensor.birdsEyeConfig,approxBoundaryWidth);
imshow(birdsEyeBW)

 parabolicLaneBoundary

4-297

4 Objects in Automated Driving System Toolbox

4-298

Obtain lane candidate points in world coordinates.

[imageX,imageY] = find(birdsEyeBW);
xyBoundaryPoints = imageToVehicle(bevSensor.birdsEyeConfig,[imageY,imageX]);

Find lane boundaries in the image by using the findParabolicLaneBoundaries
function. By default, the function returns a maximum of two lane boundaries. The
boundaries are stored in an array of parabolicLaneBoundary objects.

boundaries = findParabolicLaneBoundaries(xyBoundaryPoints,approxBoundaryWidth);

Use insertLaneBoundary to overlay the lanes on the original image. The XPoints
vector represents the lane points, in meters, that are within range of the ego vehicle's
sensor. Specify the lanes in different colors. By default, lanes are yellow.

XPoints = 3:30;

figure
sensor = bevSensor.birdsEyeConfig.Sensor;
lanesI = insertLaneBoundary(I,boundaries(1),sensor,XPoints);
lanesI = insertLaneBoundary(lanesI,boundaries(2),sensor,XPoints,'Color','green');
imshow(lanesI)

 parabolicLaneBoundary

4-299

View the lanes in the bird's-eye-view image.

figure
BEconfig = bevSensor.birdsEyeConfig;
lanesBEI = insertLaneBoundary(birdsEyeImage,boundaries(1),BEconfig,XPoints);
lanesBEI = insertLaneBoundary(lanesBEI,boundaries(2),BEconfig,XPoints,'Color','green');
imshow(lanesBEI)

4 Objects in Automated Driving System Toolbox

4-300

 parabolicLaneBoundary

4-301

See Also
Apps
Ground Truth Labeler

Objects
cubicLaneBoundary

Functions
evaluateLaneBoundaries | findParabolicLaneBoundaries |
insertLaneBoundary

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-302

cubicLaneBoundary
Cubic lane boundary model

Description
The cubicLaneBoundary object contains information about a cubic lane boundary
model.

Creation
To generate cubic lane boundary models that fit a set of boundary points and an
approximate width, use the findCubicLaneBoundaries function. If you already know
your cubic parameters, create lane boundary models by using the cubicLaneBoundary
function (described here).

Syntax
boundaries = cubicLaneBoundary(cubicParameters)

Description
boundaries = cubicLaneBoundary(cubicParameters) creates an array of cubic
lane boundary models from an array of [A B C D] parameters for the cubic equation y =
Ax3 + Bx2 + Cx + D. Points within the lane boundary models are in world coordinates.

Input Arguments
cubicParameters — Parameters for cubic models
[A B C D] numeric vector | matrix of [A B C D] values

Parameters for cubic models of the form y = Ax3 + Bx2 + Cx + D, specified as an [A B C
D] numeric vector or as a matrix of [A B C D] values. Each row of cubicParameters
describes a separate cubic lane boundary model.

 cubicLaneBoundary

4-303

Properties
Parameters — Coefficients for cubic model
[A B C D] numeric vector

Coefficients for a cubic model of the form y = Ax3 + Bx2 + Cx + D, specified as an [A B C
D] numeric vector.

BoundaryType — Type of boundary
LaneBoundaryType

Type of boundary, specified as a LaneBoundaryType of supported lane boundaries. The
supported lane boundary types are:

• Unmarked
• Solid
• Dashed
• BottsDots
• DoubleSolid

Specify a lane boundary type as LaneBoundaryType.BoundaryType. For example:

LaneBoundaryType.BottsDots

Strength — Strength of boundary model
numeric scalar

Strength of the boundary model, specified as a numeric scalar. Strength is the ratio of
the number of unique x-axis locations on the boundary to the length of the boundary
specified by the XExtent property. A solid line without any breaks has a higher strength
than a dotted line that has breaks along the full length of the boundary.

XExtent — Length of boundary along x-axis
[minX maxX] numeric vector

Length of the boundary along the x-axis, specified as a [minX maxX] numeric vector that
describes the minimum and maximum x-axis locations.

4 Objects in Automated Driving System Toolbox

4-304

Object Functions
computeBoundaryModel Obtain y-coordinates of lane boundaries given x-coordinates

Examples

Create Cubic Lane Boundaries

Create left-lane and right-lane cubic boundary models.

llane = cubicLaneBoundary([-0.0001 0.0 0.003 1.6]);
rlane = cubicLaneBoundary([-0.0001 0.0 0.003 -1.8]);

Create a bird's-eye plot and lane boundary plotter. Plot the lane boundaries.

bep = birdsEyePlot('XLimits',[0 30],'YLimits',[-10 10]);
lbPlotter = laneBoundaryPlotter(bep,'DisplayName','Lane boundaries');

plotLaneBoundary(lbPlotter, [llane rlane]);

 cubicLaneBoundary

4-305

Find Cubic Lane Boundaries in Bird's-Eye-View Image

Find lanes in an image by using cubic lane boundary models. Overlay the identified lanes
on the original image and on a bird's-eye-view transformation of the image.

Load an image of a road with lanes. The image was obtained from a camera sensor
mounted on the front of a vehicle.

I = imread('road.png');

Transform the image into a bird's-eye-view image by using a preconfigured sensor object.
This object models the sensor that captured the original image.

4 Objects in Automated Driving System Toolbox

4-306

bevSensor = load('birdsEyeConfig');
birdsEyeImage = transformImage(bevSensor.birdsEyeConfig,I);
imshow(birdsEyeImage)

 cubicLaneBoundary

4-307

4 Objects in Automated Driving System Toolbox

4-308

Set the approximate lane marker width in world units (meters).

approxBoundaryWidth = 0.25;

Detect lane features and display them as a black-and-white image.

birdsEyeBW = segmentLaneMarkerRidge(rgb2gray(birdsEyeImage), ...
 bevSensor.birdsEyeConfig,approxBoundaryWidth);
imshow(birdsEyeBW)

 cubicLaneBoundary

4-309

4 Objects in Automated Driving System Toolbox

4-310

Obtain lane candidate points in world coordinates.

[imageX,imageY] = find(birdsEyeBW);
xyBoundaryPoints = imageToVehicle(bevSensor.birdsEyeConfig,[imageY,imageX]);

Find lane boundaries in the image by using the findCubicLaneBoundaries function.
By default, the function returns a maximum of two lane boundaries. The boundaries are
stored in an array of cubicLaneBoundary objects.

boundaries = findCubicLaneBoundaries(xyBoundaryPoints,approxBoundaryWidth);

Use insertLaneBoundary to overlay the lanes on the original image. The XPoints
vector represents the lane points, in meters, that are within range of the ego vehicle's
sensor. Specify the lanes in different colors. By default, lanes are yellow.

XPoints = 3:30;

figure
sensor = bevSensor.birdsEyeConfig.Sensor;
lanesI = insertLaneBoundary(I,boundaries(1),sensor,XPoints);
lanesI = insertLaneBoundary(lanesI,boundaries(2),sensor,XPoints,'Color','green');
imshow(lanesI)

 cubicLaneBoundary

4-311

View the lanes in the bird's-eye-view image.

figure
BEconfig = bevSensor.birdsEyeConfig;
lanesBEI = insertLaneBoundary(birdsEyeImage,boundaries(1),BEconfig,XPoints);
lanesBEI = insertLaneBoundary(lanesBEI,boundaries(2),BEconfig,XPoints,'Color','green');
imshow(lanesBEI)

4 Objects in Automated Driving System Toolbox

4-312

 cubicLaneBoundary

4-313

See Also
Apps
Ground Truth Labeler

Objects
parabolicLaneBoundary

Functions
evaluateLaneBoundaries | findCubicLaneBoundaries | insertLaneBoundary

Introduced in R2018a

4 Objects in Automated Driving System Toolbox

4-314

computeBoundaryModel
Obtain y-coordinates of lane boundaries given x-coordinates

Syntax
yWorld = computeBoundaryModel(boundaries,xWorld)

Description
yWorld = computeBoundaryModel(boundaries,xWorld) computes the y-axis world
coordinates of lane boundary models at the specified x-axis world coordinates.

• If boundaries is a single lane boundary model, then yWorld is a vector of
coordinates corresponding to the coordinates in xWorld.

• If boundaries is an array of lane boundary models, then yWorld is a matrix. Each
row or column of yWorld corresponds to a lane boundary model computed at the x-
coordinates in row or column vector xWorld.

Examples

Compute Lane Boundary

Create a parabolicLaneBoundary object to model a lane boundary. Compute the
positions of the lane along a set of x-axis locations.

Specify the parabolic parameters and create a lane boundary model.

parabolicParams = [-0.005 0.15 0.55];
lb = parabolicLaneBoundary(parabolicParams);

Compute the y-axis locations for given x-axis locations within the range of a camera
sensor mounted to the front of a vehicle.

 computeBoundaryModel

4-315

xWorld = 3:30; % in meters
yWorld = computeBoundaryModel(lb,xWorld);

Plot the lane boundary points. To fit the coordinate system, flip the axis order and change
the x-direction.

plot(yWorld,xWorld)
axis equal
set(gca,'XDir','reverse')

4 Objects in Automated Driving System Toolbox

4-316

Plot Path of Ego Vehicle

Create a 3-meter-wide lane.

lb = parabolicLaneBoundary([-0.001,0.01,1.5]);
rb = parabolicLaneBoundary([-0.001,0.01,-1.5]);

Compute the model manually up to 30 meters ahead in the lane.

xWorld = (0:30)';
yLeft = computeBoundaryModel(lb,xWorld);
yRight = computeBoundaryModel(rb,xWorld);

Create a bird's-eye plot and plot the lane information.

bep = birdsEyePlot('XLimits',[0 30],'YLimits',[-5 5]);
lanePlotter = laneBoundaryPlotter(bep,'DisplayName','Lane boundaries');
plotLaneBoundary(lanePlotter,{[xWorld,yLeft],[xWorld,yRight]});

 computeBoundaryModel

4-317

Plot the path of an ego vehicle that travels through the center of the lane.

yCenter = (yLeft + yRight)/2;
egoPathPlotter = pathPlotter(bep,'DisplayName','Ego path');
plotPath(egoPathPlotter,{[xWorld,yCenter]});

4 Objects in Automated Driving System Toolbox

4-318

Find Candidate Ego Lane Boundaries

Find candidate ego lane boundaries from an array of lane boundaries.

Create an array of cubic lane boundaries.

lbs = [cubicLaneBoundary([-0.0001, 0.0, 0.003, 1.6]), ...
 cubicLaneBoundary([-0.0001, 0.0, 0.003, 4.6]), ...
 cubicLaneBoundary([-0.0001, 0.0, 0.003, -1.6]), ...
 cubicLaneBoundary([-0.0001, 0.0, 0.003, -4.6])];

For each lane boundary, compute the y-axis location at which the x-coordinate is 0.

 computeBoundaryModel

4-319

xWorld = 0; % meters
yWorld = computeBoundaryModel(lbs,0);

Use the computed locations to find the ego lane boundaries that best meet the criteria.

leftEgoBoundaryIndex = find(yWorld == min(yWorld(yWorld>0)));
rightEgoBoundaryIndex = find(yWorld == max(yWorld(yWorld<=0)));
leftEgoBoundary = lbs(leftEgoBoundaryIndex);
rightEgoBoundary = lbs(rightEgoBoundaryIndex);

Plot the boundaries using a bird's-eye plot and lane boundary plotter.

bep = birdsEyePlot('XLimits',[0 30],'YLimits',[-5 5]);
lbPlotter = laneBoundaryPlotter(bep,'DisplayName','Left-lane boundary','Color','r');
rbPlotter = laneBoundaryPlotter(bep,'DisplayName','Right-lane boundary','Color','g');
plotLaneBoundary(lbPlotter,leftEgoBoundary)
plotLaneBoundary(rbPlotter,rightEgoBoundary)

4 Objects in Automated Driving System Toolbox

4-320

Input Arguments
boundaries — Lane boundary models
lane boundary object | array of lane boundary objects

Lane boundary models containing the parameters used to compute the y-axis coordinates,
specified as a lane boundary object or an array of lane boundary objects. Valid objects are
parabolicLaneBoundary and cubicLaneBoundary.

xWorld — x-axis locations of boundaries
numeric scalar | numeric vector

 computeBoundaryModel

4-321

x-axis locations of the boundaries in world coordinates, specified as a numeric scalar or
vector.

See Also
Objects
cubicLaneBoundary | parabolicLaneBoundary

Functions
insertLaneBoundary

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-322

acfObjectDetectorMonoCamera
Detect objects in monocular camera using aggregate channel features

Description
The acfObjectDetectorMonoCamera contains information about an aggregate channel
features (ACF) object detector that is configured for use with a monocular camera sensor.
To detect objects in an image that was captured by the camera, pass the detector to the
detect function.

Creation
1 Create an acfObjectDetector object by calling the trainACFObjectDetector

function with training data.

detector = trainACFObjectDetector(trainingData,...);

Alternatively, create a pretrained detector using functions such as
vehicleDetectorACF or peopleDetectorACF.

2 Create a monoCamera object to model the monocular camera sensor.

sensor = monoCamera(...);
3 Create an acfObjectDetectorMonoCamera object by passing the detector and

sensor as inputs to the configureDetectorMonoCamera function. The configured
detector inherits property values from the original detector.

configuredDetector = configureDetectorMonoCamera(detector,sensor,...);

Properties
ModelName — Name of classification model
character vector | string scalar

Name of the classification model, specified as a character vector or string scalar. By
default, the name is set to the heading of the second column of the trainingData table

 acfObjectDetectorMonoCamera

4-323

specified in the trainACFObjectDetector function. You can modify this name after
creating your acfObjectDetectorMonoCamera object.
Example: 'stopSign'

ObjectTrainingSize — Size of training images
[height width] vector

This property is read-only.

Size of training images, specified as a [height width] vector.
Example: [100 100]

NumWeakLearners — Number of weak learners
integer

This property is read-only.

Number of weak learners used in the detector, specified as an integer.
NumWeakLearners is less than or equal to the maximum number of weak learners for the
last training stage. To restrict this maximum, you can use the 'MaxWeakLearners'
name-value pair in the trainACFObjectDetector function.

Camera — Camera configuration
monoCamera object

This property is read-only.

Camera configuration, specified as a monoCamera object. The object contains the camera
intrinsics, the location, the pitch, yaw, and roll placement, and the world units for the
parameters. Use the intrinsics to transform the object points in the image to world
coordinates, which you can then compare to the values in the WorldObjectSize
property.

WorldObjectSize — Range of object widths and lengths
[minWidth maxWidth] vector | [minWidth maxWidth; minLength maxLength] vector

Range of object widths and lengths in world units, specified as a [minWidth maxWidth]
vector or [minWidth maxWidth; minLength maxLength] vector. Specifying the range of
object lengths is optional.

4 Objects in Automated Driving System Toolbox

4-324

Object Functions
detect Detect objects using ACF object detector configured for monocular camera

Examples

Detect Vehicles Using Monocular Camera and ACF

Configure an ACF object detector for use with a monocular camera mounted on an ego
vehicle. Use this detector to detect vehicles within video frames captured by the camera.

Load an acfObjectDetector object pretrained to detect vehicles.

detector = vehicleDetectorACF;

Model a monocular camera sensor by creating a monoCamera object. This object contains
the camera intrinsics and the location of the camera on the ego vehicle.

focalLength = [309.4362 344.2161]; % [fx fy]
principalPoint = [318.9034 257.5352]; % [cx cy]
imageSize = [480 640]; % [mrows ncols]
height = 2.1798; % height of camera above ground, in meters
pitch = 14; % pitch of camera, in degrees
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

monCam = monoCamera(intrinsics,height,'Pitch',pitch);

Configure the detector for use with the camera. Limit the width of detected objects to a
typical range for vehicle widths: 1.5–2.5 meters. The configured detector is an
acfObjectDetectorMonoCamera object.

vehicleWidth = [1.5 2.5];
detectorMonoCam = configureDetectorMonoCamera(detector,monCam,vehicleWidth);

Load a video captured from the camera, and create a video reader and player.

videoFile = fullfile(toolboxdir('driving'),'drivingdata','caltech_washington1.avi');
reader = vision.VideoFileReader(videoFile,'VideoOutputDataType','uint8');
videoPlayer = vision.VideoPlayer('Position',[29 597 643 386]);

Run the detector in a loop over the video. Annotate the video with the bounding boxes for
the detections and the detection confidence scores.

 acfObjectDetectorMonoCamera

4-325

cont = ~isDone(reader);
while cont
 I = reader();

 % Run the detector.
 [bboxes,scores] = detect(detectorMonoCam,I);
 if ~isempty(bboxes)
 I = insertObjectAnnotation(I, ...
 'rectangle',bboxes, ...
 scores, ...
 'Color','g');
 end
 videoPlayer(I)
 % Exit the loop if the video player figure is closed.
 cont = ~isDone(reader) && isOpen(videoPlayer);
end

4 Objects in Automated Driving System Toolbox

4-326

See Also
Apps
Ground Truth Labeler

Functions
configureDetectorMonoCamera | peopleDetectorACF |
trainACFObjectDetector | vehicleDetectorACF

 acfObjectDetectorMonoCamera

4-327

Objects
monoCamera

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-328

detect
Detect objects using ACF object detector configured for monocular camera

Syntax
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[___]= detect(detector,I,roi)
[___] = detect(___ ,Name,Value)

Description
bboxes = detect(detector,I) detects objects within image I using an aggregate
channel features (ACF) object detector configured for a monocular camera. The locations
of objects detected are returned as a set of bounding boxes.

[bboxes,scores] = detect(detector,I) also returns the detection confidence
scores for each bounding box.

[___]= detect(detector,I,roi) detects objects within the rectangular search
region specified by roi, using any of the preceding syntaxes.

[___] = detect(___ ,Name,Value) specifies options using one or more
Name,Value pair arguments. For example, detect(detector,I,'WindowStride',2)
sets the stride of the sliding window used to detect objects to 2.

Examples

Detect Vehicles Using Monocular Camera and ACF

Configure an ACF object detector for use with a monocular camera mounted on an ego
vehicle. Use this detector to detect vehicles within video frames captured by the camera.

Load an acfObjectDetector object pretrained to detect vehicles.

 detect

4-329

detector = vehicleDetectorACF;

Model a monocular camera sensor by creating a monoCamera object. This object contains
the camera intrinsics and the location of the camera on the ego vehicle.

focalLength = [309.4362 344.2161]; % [fx fy]
principalPoint = [318.9034 257.5352]; % [cx cy]
imageSize = [480 640]; % [mrows ncols]
height = 2.1798; % height of camera above ground, in meters
pitch = 14; % pitch of camera, in degrees
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

monCam = monoCamera(intrinsics,height,'Pitch',pitch);

Configure the detector for use with the camera. Limit the width of detected objects to a
typical range for vehicle widths: 1.5–2.5 meters. The configured detector is an
acfObjectDetectorMonoCamera object.

vehicleWidth = [1.5 2.5];
detectorMonoCam = configureDetectorMonoCamera(detector,monCam,vehicleWidth);

Load a video captured from the camera, and create a video reader and player.

videoFile = fullfile(toolboxdir('driving'),'drivingdata','caltech_washington1.avi');
reader = vision.VideoFileReader(videoFile,'VideoOutputDataType','uint8');
videoPlayer = vision.VideoPlayer('Position',[29 597 643 386]);

Run the detector in a loop over the video. Annotate the video with the bounding boxes for
the detections and the detection confidence scores.

cont = ~isDone(reader);
while cont
 I = reader();

 % Run the detector.
 [bboxes,scores] = detect(detectorMonoCam,I);
 if ~isempty(bboxes)
 I = insertObjectAnnotation(I, ...
 'rectangle',bboxes, ...
 scores, ...
 'Color','g');
 end
 videoPlayer(I)
 % Exit the loop if the video player figure is closed.

4 Objects in Automated Driving System Toolbox

4-330

 cont = ~isDone(reader) && isOpen(videoPlayer);
end

Input Arguments
detector — ACF object detector configured for monocular camera
acfObjectDetectorMonoCamera object

ACF object detector configured for a monocular camera, specified as an
acfObjectDetectorMonoCamera object. To create this object, use the

 detect

4-331

configureDetectorMonoCamera function with a monoCamera object and trained
acfObjectDetector object as inputs.

I — Input image
grayscale image | RGB image

Input image, specified as a real, nonsparse, grayscale or RGB image.
Data Types: uint8 | uint16 | int16 | double | single | logical

roi — Search region of interest
[x y width height] vector

Search region of interest, specified as an [x y width height] vector. The vector specifies
the upper left corner and size of a region in pixels.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NumScaleLevels',4

NumScaleLevels — Number of scale levels per octave
8 (default) | positive integer

Number of scale levels per octave, specified as the comma-separated pair consisting of
'NumScaleLevels' and a positive integer. Each octave is a power-of-two downscaling of
the image. To detect people at finer scale increments, increase this number.
Recommended values are in the range [4, 8].

WindowStride — Stride for sliding window
4 (default) | positive integer

Stride for the sliding window, specified as the comma-separated pair consisting of
'WindowStride' and a positive integer. This value indicates the distance for the
function to move the window in both the x and y directions. The sliding window scans the
images for object detection.

SelectStrongest — Select strongest bounding box for each object
true (default) | false

4 Objects in Automated Driving System Toolbox

4-332

Select the strongest bounding box for each detected object, specified as the comma-
separated pair consisting of 'SelectStrongest' and either true or false.

• true — Return the strongest bounding box per object. To select these boxes, detect
calls the selectStrongestBbox function, which uses nonmaximal suppression to
eliminate overlapping bounding boxes based on their confidence scores.

• false — Return all detected bounding boxes. You can then create your own custom
operation to eliminate overlapping bounding boxes.

MinSize — Minimum region size
[height width] vector

Minimum region size that contains a detected object, specified as the comma-separated
pair consisting of 'MinSize' and a [height width] vector. Units are in pixels.

By default, MinSize is the smallest object that the trained detector can detect.

MaxSize — Maximum region size
size(I) (default) | [height width] vector

Maximum region size that contains a detected object, specified as the comma-separated
pair consisting of 'MaxSize' and a [height width] vector. Units are in pixels.

To reduce computation time, set this value to the known maximum region size for the
objects being detected in the image. By default, 'MaxSize' is set to the height and width
of the input image, I.

Threshold — Classification accuracy threshold
–1 (default) | numeric scalar

Classification accuracy threshold, specified as the comma-separated pair consisting of
'Threshold' and a numeric scalar. Recommended values are in the range [–1, 1].
During multiscale object detection, the threshold value controls the accuracy and speed
for classifying image subregions as either objects or nonobjects. To speed up the
performance at the risk of missing true detections, increase this threshold.

Output Arguments
bboxes — Location of objects detected within image
M-by-4 matrix

 detect

4-333

Location of objects detected within the input image, returned as an M-by-4 matrix, where
M is the number of bounding boxes. Each row of bboxes contains a four-element vector
of the form [x y width height]. This vector specifies the upper left corner and size of that
corresponding bounding box in pixels.

scores — Detection confidence scores
M-by-1 vector

Detection confidence scores, returned as an M-by-1 vector, where M is the number of
bounding boxes. A higher score indicates higher confidence in the detection.

See Also
Apps
Ground Truth Labeler

Functions
configureDetectorMonoCamera | selectStrongestBbox |
trainACFObjectDetector

Objects
acfObjectDetector | monoCamera

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-334

fastRCNNObjectDetectorMonoCamera
Detect objects in monocular camera using Fast R-CNN deep learning detector

Description
The fastRCNNObjectDetectorMonoCamera object contains information about a Fast R-
CNN (regions with convolutional neural networks) object detector that is configured for
use with a monocular camera sensor. To detect objects in an image that was captured by
the camera, pass the detector to the detect function. To classify image regions, pass the
detector to the classifyRegions function.

When using detect or classifyRegions with
fastRCNNObjectDetectorMonoCamera, use of a CUDA®-enabled NVIDIA® GPU with a
compute capability of 3.0 or higher is highly recommended. The GPU reduces
computation time significantly. Usage of the GPU requires Parallel Computing Toolbox™.

Creation
1 Create a fastRCNNObjectDetector object by calling the

trainFastRCNNObjectDetector function with training data (requires Deep
Learning Toolbox).

detector = trainFastRCNNObjectDetector(trainingData,...);
2 Create a monoCamera object to model the monocular camera sensor.

sensor = monoCamera(...);
3 Create a fastRCNNObjectDetectorMonoCamera object by passing the detector

and sensor as inputs to the configureDetectorMonoCamera function. The
configured detector inherits property values from the original detector.

configuredDetector = configureDetectorMonoCamera(detector,sensor,...);

 fastRCNNObjectDetectorMonoCamera

4-335

Properties
ModelName — Name of classification model
character vector | string scalar

Name of the classification model, specified as a character vector or string scalar. By
default, the name is set to the heading of the second column of the trainingData table
specified in the trainFastRCNNObjectDetector function. You can modify this name
after creating your fastRCNNObjectDetectorMonoCamera object.
Example: 'stopSign'

Network — Trained Fast R-CNN object detection network
object

This property is read-only.

Trained Fast R-CNN detection network, specified as an object. This object stores the
layers that define the convolutional neural network used within the Fast R-CNN detector.
This network classifies region proposals produced by the RegionProposalFcn property.

RegionProposalFcn — Region proposal method
function handle

Region proposal method, specified as a function handle.

ClassNames — Object class names
cell array

This property is read-only.

Names of the object classes that the Fast R-CNN detector was trained to find, specified as
a cell array. This property is set by the trainingData input argument for the
trainFastRCNNObjectDetector function. Specify the class names as part of the
trainingData table.

MinObjectSize — Minimum object size supported
[height width] vector

This property is read-only.

Minimum object size supported by the Fast R-CNN network, specified as a [height width]
vector. The minimum size depends on the network architecture.

4 Objects in Automated Driving System Toolbox

4-336

Camera — Camera configuration
monoCamera object

This property is read-only.

Camera configuration, specified as a monoCamera object. The object contains the camera
intrinsics, the location, the pitch, yaw, and roll placement, and the world units for the
parameters. Use the intrinsics to transform the object points in the image to world
coordinates, which you can then compare to the values in the WorldObjectSize
property.

WorldObjectSize — Range of object widths and lengths
[minWidth maxWidth] vector | [minWidth maxWidth; minLength maxLength] vector

Range of object widths and lengths in world units, specified as a [minWidth maxWidth]
vector or [minWidth maxWidth; minLength maxLength] vector. Specifying the range of
object lengths is optional.

Object Functions
detect Detect objects using Fast R-CNN object detector configured for

monocular camera
classifyRegions Classify objects in image regions using Fast R-CNN object detector

configured for monocular camera

See Also
Apps
Ground Truth Labeler

Functions
configureDetectorMonoCamera | trainFastRCNNObjectDetector

Objects
fastRCNNObjectDetector | monoCamera

Topics
“R-CNN, Fast R-CNN, and Faster R-CNN Basics” (Computer Vision System Toolbox)

 fastRCNNObjectDetectorMonoCamera

4-337

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-338

detect
Detect objects using Fast R-CNN object detector configured for monocular camera

Syntax
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[___ ,labels] = detect(detector,I)
[___] = detect(___ ,roi)
[___] = detect(___ ,Name,Value)

Description
bboxes = detect(detector,I) detects objects within image I using a Fast R-CNN
(regions with convolutional neural networks) object detector configured for a monocular
camera. The locations of objects detected are returned as a set of bounding boxes.

When using this function, use of a CUDA-enabled NVIDIA GPU with a compute capability
of 3.0 or higher is highly recommended. The GPU reduces computation time significantly.
Usage of the GPU requires Parallel Computing Toolbox.

[bboxes,scores] = detect(detector,I) also returns the detection confidence
scores for each bounding box.

[___ ,labels] = detect(detector,I) also returns a categorical array of labels
assigned to the bounding boxes, using any of the preceding syntaxes. The labels used for
object classes are defined during training using the trainFastRCNNObjectDetector
function.

[___] = detect(___ ,roi) detects objects within the rectangular search region
specified by roi.

[___] = detect(___ ,Name,Value) specifies options using one or more
Name,Value pair arguments. For example,
detect(detector,I,'NumStongestRegions',1000) limits the number of strongest
region proposals to 1000.

 detect

4-339

Input Arguments
detector — Fast R-CNN object detector configured for monocular camera
fastRCNNObjectDetectorMonoCamera object

Fast R-CNN object detector configured for a monocular camera, specified as a
fastRCNNObjectDetectorMonoCamera object. To create this object, use the
configureDetectorMonoCamera function with a monoCamera object and trained
fastRCNNObjectDetector object as inputs.

I — Input image
grayscale image | RGB image

Input image, specified as a real, nonsparse, grayscale or RGB image.

The detector is sensitive to the range of the input image. Therefore, ensure that the input
image range is similar to the range of the images used to train the detector. For example,
if the detector was trained on uint8 images, rescale this input image to the range [0,
255] by using the im2uint8 or rescale function. The size of this input image should be
comparable to the sizes of the images used in training. If these sizes are very different,
the detector has difficulty detecting objects because the scale of the objects in the input
image differs from the scale of the objects the detector was trained to identify. Consider
whether you used the SmallestImageDimension property during training to modify the
size of training images.
Data Types: uint8 | uint16 | int16 | double | single | logical

roi — Search region of interest
[x y width height] vector

Search region of interest, specified as an [x y width height] vector. The vector specifies
the upper left corner and size of a region in pixels.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NumStongestRegions',1000

4 Objects in Automated Driving System Toolbox

4-340

NumStrongestRegions — Maximum number of strongest region proposals
2000 (default) | positive integer | Inf

Maximum number of strongest region proposals, specified as the comma-separated pair
consisting of 'NumStrongestRegions' and a positive integer. Reduce this value to
speed up processing time at the cost of detection accuracy. To use all region proposals,
specify this value as Inf.

SelectStrongest — Select strongest bounding box
true (default) | false

Select the strongest bounding box for each detected object, specified as the comma-
separated pair consisting of 'SelectStrongest' and either true or false.

• true — Return the strongest bounding box per object. To select these boxes, detect
calls the selectStrongestBboxMulticlass function, which uses nonmaximal
suppression to eliminate overlapping bounding boxes based on their confidence
scores.

For example:

 selectStrongestBboxMulticlass(bbox,scores, ...
 'RatioType','Min', ...
 'OverlapThreshold',0.5);

• false — Return all detected bounding boxes. You can then create your own custom
operation to eliminate overlapping bounding boxes.

MinSize — Minimum region size
[height width] vector

Minimum region size that contains a detected object, specified as the comma-separated
pair consisting of 'MinSize' and a [height width] vector. Units are in pixels.

By default, MinSize is the smallest object that the trained detector can detect.

MaxSize — Maximum region size
size(I) (default) | [height width] vector

Maximum region size that contains a detected object, specified as the comma-separated
pair consisting of 'MaxSize' and a [height width] vector. Units are in pixels.

 detect

4-341

To reduce computation time, set this value to the known maximum region size for the
objects being detected in the image. By default, 'MaxSize' is set to the height and width
of the input image, I.

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource on which to run the detector, specified as the comma-separated pair
consisting of 'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'.

• 'auto' — Use a GPU if it is available. Otherwise, use the CPU.
• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a

CUDA enabled NVIDIA GPU with a compute capability of 3.0 or higher. If a suitable
GPU is not available, the function returns an error.

• 'cpu' — Use the CPU.

Output Arguments
bboxes — Location of objects detected within image
M-by-4 matrix

Location of objects detected within the input image, returned as an M-by-4 matrix, where
M is the number of bounding boxes. Each row of bboxes contains a four-element vector
of the form [x y width height]. This vector specifies the upper left corner and size of that
corresponding bounding box in pixels.

scores — Detection scores
M-by-1 vector

Detection confidence scores, returned as an M-by-1 vector, where M is the number of
bounding boxes. A higher score indicates higher confidence in the detection.

labels — Labels for bounding boxes
M-by-1 categorical array

Labels for bounding boxes, returned as an M-by-1 categorical array of M labels. You
define the class names used to label the objects when you train the input detector.

4 Objects in Automated Driving System Toolbox

4-342

See Also
Apps
Ground Truth Labeler

Functions
configureDetectorMonoCamera | selectStrongestBboxMulticlass |
trainFastRCNNObjectDetector

Objects
fastRCNNObjectDetectorMonoCamera | monoCamera

Introduced in R2017a

 detect

4-343

classifyRegions
Classify objects in image regions using Fast R-CNN object detector configured for
monocular camera

Syntax
[labels,scores] = classifyRegions(detector,I,rois)
[labels,scores,allScores] = classifyRegions(detector,I,rois)
[___] = classifyRegions(___ ,'ExecutionEnvironment',resource)

Description
[labels,scores] = classifyRegions(detector,I,rois) classifies objects within
the regions of interest of image I, using a Fast R-CNN (regions with convolutional neural
networks) object detector configured for a monocular camera. For each region,
classifyRegions returns the class label with the corresponding highest classification
score.

When using this function, use of a CUDA enabled NVIDIA GPU with a compute capability
of 3.0 or higher is highly recommended. The GPU reduces computation time significantly.
Usage of the GPU requires Parallel Computing Toolbox.

[labels,scores,allScores] = classifyRegions(detector,I,rois) also
returns all the classification scores of each region. The scores are returned in an M-by-N
matrix of M regions and N class labels.

[___] = classifyRegions(___ ,'ExecutionEnvironment',resource) specifies
the hardware resource used to classify objects within image regions. You can use this
name-value pair with any of the preceding syntaxes.

Input Arguments
detector — Fast R-CNN object detector configured for monocular camera
fastRCNNObjectDetectorMonoCamera object

4 Objects in Automated Driving System Toolbox

4-344

Fast R-CNN object detector configured for a monocular camera, specified as a
fastRCNNObjectDetectorMonoCamera object. To create this object, use the
configureDetectorMonoCamera function with a monoCamera object and trained
fastRCNNObjectDetector object as inputs.

I — Input image
grayscale image | RGB image

Input image, specified as a real, nonsparse, grayscale or RGB image.
Data Types: uint8 | uint16 | int16 | double | single | logical

rois — Regions of interest
M-by-4 matrix

Regions of interest within the image, specified as an M-by-4 matrix defining M
rectangular regions. Each row contains a four-element vector of the form [x y width
height]. This vector specifies the upper left corner and size of a region in pixels.

resource — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource used to classify image regions, specified as
'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'.

• 'auto' — Use a GPU if it is available. Otherwise, use the CPU.
• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a

CUDA enabled NVIDIA GPU with a compute capability of 3.0 or higher. If a suitable
GPU is not available, the function returns an error.

• 'cpu' — Use the CPU.

Example: 'ExecutionEnvironment','cpu'

Output Arguments
labels — Classification labels of regions
M-by-1 categorical array

Classification labels of regions, returned as an M-by-1 categorical array. M is the number
of regions of interest in rois. Each class name in labels corresponds to a classification

 classifyRegions

4-345

score in scores and a region of interest in rois. classifyRegions obtains the class
names from the input detector.

scores — Highest classification score per region
M-by-1 vector of values in the range [0, 1]

Highest classification score per region, returned as an M-by-1 vector of values in the
range [0, 1]. M is the number of regions of interest in rois. Each classification score in
scores corresponds to a class name in labels and a region of interest in rois. A higher
score indicates higher confidence in the classification.

allScores — All classification scores per region
M-by-N matrix of values in the range [0, 1]

All classification scores per region, returned as an M-by-N matrix of values in the range
[0, 1]. M is the number of regions in rois. N is the number of class names stored in the
input detector. Each row of classification scores in allscores corresponds to a region
of interest in rois. A higher score indicates higher confidence in the classification.

See Also
Apps
Ground Truth Labeler

Functions
configureDetectorMonoCamera | trainFastRCNNObjectDetector

Objects
fastRCNNObjectDetectorMonoCamera | monoCamera

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-346

fasterRCNNObjectDetectorMonoCamera
Detect objects in monocular camera using Faster R-CNN deep learning detector

Description
The fasterRCNNObjectDetectorMonoCamera object contains information about a
Faster R-CNN (regions with convolutional neural networks) object detector that is
configured for use with a monocular camera sensor. To detect objects in an image that
was captured by the camera, pass the detector to the detect function.

When using the detect function with fasterRCNNObjectDetectorMonoCamera, use
of a CUDA enabled NVIDIA GPU with a compute capability of 3.0 or higher is highly
recommended. The GPU reduces computation time significantly. Usage of the GPU
requires Parallel Computing Toolbox.

Creation
1 Create a fasterRCNNObjectDetector object by calling the

trainFasterRCNNObjectDetector function with training data (requires Deep
Learning Toolbox).

detector = trainFasterRCNNObjectDetector(trainingData,...);

Alternatively, create a pretrained detector by using the
vehicleDetectorFasterRCNN function.

2 Create a monoCamera object to model the monocular camera sensor.

sensor = monoCamera(...);

3 Create a fasterRCNNObjectDetectorMonoCamera object by passing the detector
and sensor as inputs to the configureDetectorMonoCamera function. The
configured detector inherits property values from the original detector.

configuredDetector = configureDetectorMonoCamera(detector,sensor,...);

 fasterRCNNObjectDetectorMonoCamera

4-347

Properties
ModelName — Name of classification model
character vector | string scalar

This property is read-only.

Name of the classification model, specified as a character vector or string scalar. By
default, the name is set to the heading of the second column of the trainingData table
specified in the trainFasterRCNNObjectDetector function. You can modify this name
after creating your fasterRCNNObjectDetectorMonoCamera object.

Network — Trained Fast R-CNN object detection network
DAGNetwork object

This property is read-only.

Trained Fast R-CNN object detection network, specified as a DAGNetwork object. This
object stores the layers that define the convolutional neural network used within the
Faster R-CNN detector.

AnchorBoxes — Size of anchor boxes
M-by-2 matrix

This property is read-only.

Size of anchor boxes, specified as an M-by-2 matrix, where each row is in the format
[height width]. This value is set during training.

ClassNames — Object class names
cell array

This property is read-only.

Names of the object classes that the Faster R-CNN detector was trained to find, specified
as a cell array. This property is set by the trainingData input argument for the
trainFasterRCNNObjectDetector function. Specify the class names as part of the
trainingData table.

MinObjectSize — Minimum object size supported
[height width] vector

4 Objects in Automated Driving System Toolbox

4-348

This property is read-only.

Minimum object size supported by the Faster R-CNN network, specified as a [height
width] vector. The minimum size depends on the network architecture.

Camera — Camera configuration
monoCamera object

This property is read-only.

Camera configuration, specified as a monoCamera object. The object contains the camera
intrinsics, the location, the pitch, yaw, and roll placement, and the world units for the
parameters. Use the intrinsics to transform the object points in the image to world
coordinates, which you can then compare to the values in the WorldObjectSize
property.

WorldObjectSize — Range of object widths and lengths
[minWidth maxWidth] vector | [minWidth maxWidth; minLength maxLength] vector

Range of object widths and lengths in world units, specified as a [minWidth maxWidth]
vector or [minWidth maxWidth; minLength maxLength] vector. Specifying the range of
object lengths is optional.

Object Functions
detect Detect objects using Faster R-CNN object detector configured for monocular

camera

Examples

Detect Vehicles Using Monocular Camera and Faster R-CNN

Configure a Faster R-CNN object detector for use with a monocular camera mounted on
an ego vehicle. Use this detector to detect vehicles within an image captured by the
camera.

Load a fasterRCNNObjectDetector object pretrained to detect vehicles.

detector = vehicleDetectorFasterRCNN;

 fasterRCNNObjectDetectorMonoCamera

4-349

Model a monocular camera sensor by creating a monoCamera object. This object contains
the camera intrinsics and the location of the camera on the ego vehicle.

focalLength = [309.4362 344.2161]; % [fx fy]
principalPoint = [318.9034 257.5352]; % [cx cy]
imageSize = [480 640]; % [mrows ncols]
height = 2.1798; % height of camera above ground, in meters
pitch = 14; % pitch of camera, in degrees
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

monCam = monoCamera(intrinsics,height,'Pitch',pitch);

Configure the detector for use with the camera. Limit the width of detected objects to a
typical range for vehicle widths: 1.5–2.5 meters. The configured detector is a
fasterRCNNObjectDetectorMonoCamera object.

vehicleWidth = [1.5 2.5];
detectorMonoCam = configureDetectorMonoCamera(detector,monCam,vehicleWidth);

Read in an image captured by the camera.

I = imread('carsinfront.png');
imshow(I)

4 Objects in Automated Driving System Toolbox

4-350

Detect the vehicles in the image by using the detector. Annotate the image with the
bounding boxes for the detections and the detection confidence scores.

[bboxes,scores] = detect(detectorMonoCam,I);
I = insertObjectAnnotation(I,'rectangle',bboxes,scores,'Color','g');
imshow(I)

 fasterRCNNObjectDetectorMonoCamera

4-351

See Also
Apps
Ground Truth Labeler

Functions
configureDetectorMonoCamera | trainFasterRCNNObjectDetector |
vehicleDetectorFasterRCNN

4 Objects in Automated Driving System Toolbox

4-352

Objects
fasterRCNNObjectDetector | monoCamera

Topics
“R-CNN, Fast R-CNN, and Faster R-CNN Basics” (Computer Vision System Toolbox)

Introduced in R2017a

 fasterRCNNObjectDetectorMonoCamera

4-353

detect
Detect objects using Faster R-CNN object detector configured for monocular camera

Syntax
bboxes = detect(detector,I)
[bboxes,scores] = detect(detector,I)
[___ ,labels] = detect(detector,I)
[___] = detect(___ ,roi)
[___] = detect(___ ,Name,Value)

Description
bboxes = detect(detector,I) detects objects within image I using a Faster R-CNN
(regions with convolutional neural networks) object detector configured for a monocular
camera. The locations of objects detected are returned as a set of bounding boxes.

When using this function, use of a CUDA-enabled NVIDIA GPU with a compute capability
of 3.0 or higher is highly recommended. The GPU reduces computation time significantly.
Usage of the GPU requires Parallel Computing Toolbox.

[bboxes,scores] = detect(detector,I) also returns the detection confidence
scores for each bounding box.

[___ ,labels] = detect(detector,I) also returns a categorical array of labels
assigned to the bounding boxes, using any of the preceding syntaxes. The labels used for
object classes are defined during training using the trainFasterRCNNObjectDetector
function.

[___] = detect(___ ,roi) detects objects within the rectangular search region
specified by roi.

[___] = detect(___ ,Name,Value) specifies options using one or more
Name,Value pair arguments. For example,
detect(detector,I,'NumStongestRegions',1000) limits the number of strongest
region proposals to 1000.

4 Objects in Automated Driving System Toolbox

4-354

Examples

Detect Vehicles Using Monocular Camera and Faster R-CNN

Configure a Faster R-CNN object detector for use with a monocular camera mounted on
an ego vehicle. Use this detector to detect vehicles within an image captured by the
camera.

Load a fasterRCNNObjectDetector object pretrained to detect vehicles.

detector = vehicleDetectorFasterRCNN;

Model a monocular camera sensor by creating a monoCamera object. This object contains
the camera intrinsics and the location of the camera on the ego vehicle.

focalLength = [309.4362 344.2161]; % [fx fy]
principalPoint = [318.9034 257.5352]; % [cx cy]
imageSize = [480 640]; % [mrows ncols]
height = 2.1798; % height of camera above ground, in meters
pitch = 14; % pitch of camera, in degrees
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

monCam = monoCamera(intrinsics,height,'Pitch',pitch);

Configure the detector for use with the camera. Limit the width of detected objects to a
typical range for vehicle widths: 1.5–2.5 meters. The configured detector is a
fasterRCNNObjectDetectorMonoCamera object.

vehicleWidth = [1.5 2.5];
detectorMonoCam = configureDetectorMonoCamera(detector,monCam,vehicleWidth);

Read in an image captured by the camera.

I = imread('carsinfront.png');
imshow(I)

 detect

4-355

Detect the vehicles in the image by using the detector. Annotate the image with the
bounding boxes for the detections and the detection confidence scores.

[bboxes,scores] = detect(detectorMonoCam,I);
I = insertObjectAnnotation(I,'rectangle',bboxes,scores,'Color','g');
imshow(I)

4 Objects in Automated Driving System Toolbox

4-356

Input Arguments
detector — Faster R-CNN object detector configured for monocular camera
fasterRCNNObjectDetectorMonoCamera object

Faster R-CNN object detector configured for a monocular camera, specified as a
fasterRCNNObjectDetectorMonoCamera object. To create this object, use the
configureDetectorMonoCamera function with a monoCamera object and trained
fasterRCNNObjectDetector object as inputs.

 detect

4-357

I — Input image
grayscale image | RGB image

Input image, specified as a real, nonsparse, grayscale or RGB image.

The detector is sensitive to the range of the input image. Therefore, ensure that the input
image range is similar to the range of the images used to train the detector. For example,
if the detector was trained on uint8 images, rescale this input image to the range [0,
255] by using the im2uint8 or rescale function. The size of this input image should be
comparable to the sizes of the images used in training. If these sizes are very different,
the detector has difficulty detecting objects because the scale of the objects in the input
image differs from the scale of the objects the detector was trained to identify. Consider
whether you used the SmallestImageDimension property during training to modify the
size of training images.
Data Types: uint8 | uint16 | int16 | double | single | logical

roi — Search region of interest
[x y width height] vector

Search region of interest, specified as an [x y width height] vector. The vector specifies
the upper left corner and size of a region in pixels.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NumStongestRegions',1000

NumStrongestRegions — Maximum number of strongest region proposals
2000 (default) | positive integer | Inf

Maximum number of strongest region proposals, specified as the comma-separated pair
consisting of 'NumStrongestRegions' and a positive integer. Reduce this value to
speed up processing time at the cost of detection accuracy. To use all region proposals,
specify this value as Inf.

SelectStrongest — Select strongest bounding box
true (default) | false

4 Objects in Automated Driving System Toolbox

4-358

Select the strongest bounding box for each detected object, specified as the comma-
separated pair consisting of 'SelectStrongest' and either true or false.

• true — Return the strongest bounding box per object. To select these boxes, detect
calls the selectStrongestBboxMulticlass function, which uses nonmaximal
suppression to eliminate overlapping bounding boxes based on their confidence
scores.

For example:

 selectStrongestBboxMulticlass(bbox,scores, ...
 'RatioType','Min', ...
 'OverlapThreshold',0.5);

• false — Return all detected bounding boxes. You can then create your own custom
operation to eliminate overlapping bounding boxes.

MinSize — Minimum region size
[height width] vector

Minimum region size that contains a detected object, specified as the comma-separated
pair consisting of 'MinSize' and a [height width] vector. Units are in pixels.

By default, MinSize is the smallest object that the trained detector can detect.

MaxSize — Maximum region size
size(I) (default) | [height width] vector

Maximum region size that contains a detected object, specified as the comma-separated
pair consisting of 'MaxSize' and a [height width] vector. Units are in pixels.

To reduce computation time, set this value to the known maximum region size for the
objects being detected in the image. By default, 'MaxSize' is set to the height and width
of the input image, I.

ExecutionEnvironment — Hardware resource
'auto' (default) | 'gpu' | 'cpu'

Hardware resource on which to run the detector, specified as the comma-separated pair
consisting of 'ExecutionEnvironment' and 'auto', 'gpu', or 'cpu'.

• 'auto' — Use a GPU if it is available. Otherwise, use the CPU.

 detect

4-359

• 'gpu' — Use the GPU. To use a GPU, you must have Parallel Computing Toolbox and a
CUDA enabled NVIDIA GPU with a compute capability of 3.0 or higher. If a suitable
GPU is not available, the function returns an error.

• 'cpu' — Use the CPU.

Output Arguments
bboxes — Location of objects detected within image
M-by-4 matrix

Location of objects detected within the input image, returned as an M-by-4 matrix, where
M is the number of bounding boxes. Each row of bboxes contains a four-element vector
of the form [x y width height]. This vector specifies the upper left corner and size of that
corresponding bounding box in pixels.

scores — Detection scores
M-by-1 vector

Detection confidence scores, returned as an M-by-1 vector, where M is the number of
bounding boxes. A higher score indicates higher confidence in the detection.

labels — Labels for bounding boxes
M-by-1 categorical array

Labels for bounding boxes, returned as an M-by-1 categorical array of M labels. You
define the class names used to label the objects when you train the input detector.

See Also
Apps
Ground Truth Labeler

Functions
configureDetectorMonoCamera | selectStrongestBboxMulticlass |
trainFasterRCNNObjectDetector

Objects
fasterRCNNObjectDetectorMonoCamera | monoCamera

4 Objects in Automated Driving System Toolbox

4-360

Introduced in R2017a

 detect

4-361

drivingScenario class

Create driving scenario

Description
The drivingScenario class creates a driving scenario object. A driving scenario is a 3-
D arena containing roads and actors. Actors represent anything that moves, such as cars,
pedestrians, bicycles, and other objects. Actors can also include stationary obstacles that
can influence the motion of other actors. There are two classes of actors. The first class is
a general-purpose actor belonging to the Actor class. All actors are modeled as cuboid,
that is, box shapes. The second class is vehicles. Vehicles are a special type of actor with
additional properties and belong to the Vehicle class. Except when noted, references to
an actor includes vehicles as well. You can populate the scenario by using the actor,
vehicle, and road methods.

Construction
sc = drivingScenario returns an empty driving scenario.

sc = drivingScenario(Name,Value) uses name-value pair arguments to specify the
SampleTime and StopTime properties. Enclose each property name in quotes.

Properties
SampleTime — Time interval between scenario simulation steps
0.01 (default) | positive scalar

Time interval between scenario simulation steps, specified as a positive scalar. Units are
in seconds.
Example: 1.5
Data Types: double

4 Objects in Automated Driving System Toolbox

4-362

StopTime — End time of simulation
Inf (default) | positive scalar

End time of simulation, specified as a positive scalar. Units are in seconds.
Example: 60.0
Data Types: double

SimulationTime — Current time of simulation
positive scalar

This property is read-only.

Current time of the simulation, specified as a positive scalar. To reset the time to zero and
restart the simulation, call the restartSimulation method. Units are in seconds.
Data Types: double

IsRunning — Simulation state
true | false

This property is read-only.

Simulation state, specified as true or false. If the simulation is running, IsRunning is
true.
Data Types: logical

Actors — Actors and vehicles contained in scenario
heterogeneous array of actors

This property is read-only.

Actors and vehicles contained in the scenario, specified as a heterogeneous array. To add
an actor to the scenario, use the actor or vehicle method.

 drivingScenario class

4-363

Methods
actor Create an actor within driving scenario
actorPoses Positions, velocities, and orientations of actors in driving scenario
actorProfiles Physical and radar properties of actors in driving scenario
advance Advance driving scenario simulation by one time step
vehicle Create a vehicle within driving scenario
plot Create driving scenario plot
road Add a road to driving scenario
roadNetwork Add road network to driving scenario
record Run driving scenario and record actor states
restart Restart driving scenario simulation from beginning
updatePlots Update driving scenario plots
laneMarkingVertices Lane marking vertices and faces

chasePlot Egocentric projective perspective plot
currentLane Current lane of actor
laneBoundaries Lane boundaries
roadBoundaries Show road boundaries
targetOutlines Outlines of targets viewed by actor
targetPoses Target positions and orientations seen from an actor
trajectory Create actor or vehicle trajectory in driving scenario

Examples

Create Driving Scenario with Multiple Actors and Roads

Create a driving scenario containing a curved road, two straight roads, and two actors: a
car and a bicycle. Both actors move along the road for 60 seconds.

Set up the driving scenario object.

sc = drivingScenario('SampleTime',0.1','StopTime',60);

4 Objects in Automated Driving System Toolbox

4-364

Create the curved road using road center points following the arc of a circle with an 800
meter radius starting. The arc starts at 0°, ends at 90°, and is sampled at 5° increments.

angs = [0:5:90]';
R = 800;
roadcenters = R*[cosd(angs) sind(angs) zeros(size(angs))];
roadwidth = 10;
road(sc,roadcenters,roadwidth);

Add a two straight roads with the default width, using road center points at each end.

roadcenters = [700 0 0; 100 0 0];
road(sc,roadcenters)
roadcenters = [400 400 0; 0 0 0];
road(sc,roadcenters)

Get the road boundaries.

rbdry = roadBoundaries(sc);

Add a car and a bicycle to the scenario. Position the car at the beginning of the first
straight road.

car = vehicle(sc,'Position',[700 0 0],'Length',3,'Width',2,'Height',1.6);

Position the bicycle farther down the road.

bicycle = actor(sc,'Position',[706 376 0]','Length',2,'Width',0.45,'Height',1.5);

Plot the scenario.

plot(sc,'Centerline','on','RoadCenters','on');
title('Scenario');

 drivingScenario class

4-365

Display the actors poses and profiles.

poses = actorPoses(sc)

poses = 2x1 struct array with fields:
 ActorID
 Position
 Velocity
 Roll
 Pitch
 Yaw
 AngularVelocity

profiles = actorProfiles(sc)

4 Objects in Automated Driving System Toolbox

4-366

profiles = 2x1 struct array with fields:
 ActorID
 ClassID
 Length
 Width
 Height
 OriginOffset
 RCSPattern
 RCSAzimuthAngles
 RCSElevationAngles

Show Target Outlines in Driving Scenario Simulation

Create a driving scenario and show how target outlines change as the simulation
advances.

Set up a driving scenario with a vehicle and a pedestrian

Set up a driving scenario consisting of two intersecting straight roads. Construct one
straight road segment to be 45 m long. The second straight road is 32 meters long and
intersects the first road. A car travelling at 12.0 m/s along the first road approaches a
running pedestrian crossing the intersection moving at 2.0 m/s.

s = drivingScenario('SampleTime',0.1,'StopTime',1);
road(s,[-10 0 0; 45 -20 0]);
road(s,[-10 -10 0; 35 10 0]);
ped = actor(s,'Length',0.4,'Width',0.6,'Height',1.7);
car = vehicle(s);
pedspeed = 2.0;
carspeed = 12.0;
trajectory(ped,[15 -3 0; 15 3 0],pedspeed);
trajectory(car,[-10 -10 0; 35 10 0],carspeed);

Create an egocentric chase plot for the vehicle

chasePlot(car,'Centerline','on')

 drivingScenario class

4-367

Create a bird's-eye plot of road boundaries and actors

Create an empty bird's-eye plot and add an outline plotter and lane boundary plotter.

bepPlot = birdsEyePlot('XLim',[-50 50],'YLim',[-40 40]);
outlineplotter = outlinePlotter(bepPlot);
laneplotter = laneBoundaryPlotter(bepPlot);
legend('off')

4 Objects in Automated Driving System Toolbox

4-368

Run the simulation

At each simulation step:

• Update and display the chase plot road boundaries and target outline.
• Update the bird's-eye plotter for the road boundary and target outline. The plot

perspective is always with respect to the ego actor.

while advance(s)
 rb = roadBoundaries(car);
 [position,yaw,length,width,originOffset,color] = targetOutlines(car);

 drivingScenario class

4-369

 plotLaneBoundary(laneplotter,rb)
 plotOutline(outlineplotter,position, yaw, length, width, ...
 'OriginOffset',originOffset,'Color',color)
 pause(0.01)
end

4 Objects in Automated Driving System Toolbox

4-370

Algorithms

How to specify motion in a driving scenario
There are two ways that you can manage an actor's motion in a driving scenario.

• When an actor's motion is defined using the trajectory method, the actor pose
parameters (position, velocity, yaw, pitch, roll, and angular velocity) are determined by

 drivingScenario class

4-371

the trajectory waypoints and speed arguments. Because the actor follows a trajectory,
the motion is completely defined by speed, not velocity, because the direction of
motion is determined by the trajectory. The actor moves along the trajectory each time
the advance method is called. You can manually set any pose property at any time
during a simulation, but these properties are overwritten with updated values at the
next call to advance.

• When the actor's motion is not defined by a trajectory, you must manage the actor
motion manually. Setting the velocity or angular velocity properties will not
automatically move the actor in successive calls to advance. You must update the
position, velocity and the other pose parameters at each simulation time step using
your own motion model.

See Also
Apps
Driving Scenario Designer

System Objects
multiObjectTracker | radarDetectionGenerator | visionDetectionGenerator

Topics
“Define Road Layouts”
“Create Actor and Vehicle Trajectories”
“Sensor Fusion Using Synthetic Radar and Vision Data”
“Model Radar Sensor Detections”
“Model Vision Sensor Detections”
“Radar Signal Simulation and Processing for Automated Driving”
“Coordinate Systems in Automated Driving System Toolbox”

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-372

actor
Class: drivingScenario

Create an actor within driving scenario

Syntax
ac = actor(sc)
ac = actor(sc,Name,Value)

Description
ac = actor(sc) adds an Actor object, ac, to the driving scenario, sc. The method
creates an actor with default property values. Actors are cuboid (box shaped) generic
objects. Each actor is assigned a unique integer ID specified in the ActorID field of the
Actor class.

ac = actor(sc,Name,Value) adds an actor with additional options specified by one or
more Name,Value pair arguments. Name is a property name and Value is the
corresponding value. Name must appear inside single quotes (''). You can specify several
name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN. Any
unspecified properties take default values.

Input Arguments
sc — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.
Example: drivingScenario

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 actor

4-373

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Length — Length of actor
4.7 (default) | positive scalar

Length of actor, specified as a positive scalar. Units are in meters.
Example: 5.5
Data Types: double

Width — Width of actor
1.8 (default) | positive scalar

Width of actor, specified as a positive scalar. Units are in meters.
Example: 3.0
Data Types: double

Height — Height of actor
1.4 (default) | positive scalar

Height of actor, specified as a positive scalar. Units are in meters.
Example: 2.1
Data Types: double

Position — Position of actor center
[0 0 0] (default) | real-valued three-element vector

Position of the center of an actor, specified as a real-valued three-element vector. The
height, H, length, L, and width, W, determine the dimensions of the actor. The center of
the actor is the midpoint of its length, L/2, and the midpoint of its width, W/2, on the
bottom of the cuboid. The Position property specifies the position of this center. The
Velocity property specifies the velocity of the center. Units are in meters.
Example: [10;50;0]
Data Types: double

Velocity — Velocity of actor
[0 0 0] (default) | real-valued three-element vector

4 Objects in Automated Driving System Toolbox

4-374

Velocity of actor, specified as a real-valued three-element vector representing the (x,y,z)
velocity components of the actor. The Velocity property specifies the velocity of the
center specified by Position. Units are in meters per second.
Example: [-4;7;10]
Data Types: double

Roll — Roll angle of the actor
0 (default) | scalar

Roll angle of actor, specified as a scalar. Roll is the clockwise angle of rotation of the actor
around the x-axis. Units are in degrees.
Example: -10
Data Types: double

Pitch — Roll angle of the actor
0 (default) | scalar

Pitch angle of actor, specified as a scalar. Pitch is the clockwise angle of rotation of the
actor around the y-axis. Units are in degrees.
Example: 5.8
Data Types: double

Yaw — Yaw angle of the actor
0 (default) | scalar

Yaw angle of actor, specified as a scalar. Yaw is the clockwise angle of rotation of the actor
around the z-axis. Units are in degrees.
Example: -0.4
Data Types: double

AngularVelocity — Angular rotation velocity of actor
[0 0 0] (default) | real-valued three-element row vector

Angular rotation velocity of actor, specified as a real-valued three-element row vector. The
vector defines the components of the angular velocity vector in (x,y,z) scenario
coordinates. Units are in degrees per second.

 actor

4-375

RCSPattern — Radar cross-section pattern of actor
[10 10; 10 10] (default) | real-valued Q-by-P matrix

Radar cross-section (RCS) pattern of actor, specified as a real-valued Q-by-P matrix. The
radar cross-section pattern is a function of azimuth and elevation. Q is the number of
elevation angles specified by the RCSElevationAngles property. P is the number of
azimuth angles specified by the RCSAzimuthAngles property. Units are in dBsm.
Example: [5.8 5.9 5.9]
Data Types: double

RCSAzimuthAngles — Azimuth angles of radar cross-section pattern
[-180 180] (default) | real-valued P-element vector

Azimuth angles of the radar cross-section pattern, specified as a real-valued P-element
vector. Each entry defines the azimuth angle of the corresponding column of the radar
cross-section specified by the RCSPattern property. Units are in degrees. Azimuth angles
lie in the range from –180° to 180°.
Example: [-90:90]
Data Types: double

RCSElevationAngles — Elevation angles of radar cross-section pattern
[-90 90] (default) | real-valued Q-element vector

Elevation angles of the radar cross-section pattern, specified as a real-valued Q-element
vector. Each entry defines the elevation angle of the corresponding row of the radar
cross-section specified by the RCSPattern property. Units are in degrees. Elevation
angles lie in the range from –90° to 90°.
Example: [0:90]
Data Types: double

ClassID — Classification identifier
0 (default) | nonnegative integer

Classification identifier specified as a nonnegative integer. You can define your own actor
classification scheme and assign ClassIDvalues to actors according to the scheme. The
value of 0 is reserved for an object of unknown or unassigned class.
Example: 5
Data Types: double

4 Objects in Automated Driving System Toolbox

4-376

Output Arguments
ac — Scenario actor
Actor object

Scenario actor, returned as an Actor object.

Methods
path (To be removed) Create actor or vehicle path in driving scenario
chasePlot Egocentric projective perspective plot
roadBoundaries Show road boundaries
targetOutlines Outlines of targets viewed by actor
targetPoses Target positions and orientations seen from an actor
trajectory Create actor or vehicle trajectory in driving scenario

Introduced in R2017a

 actor

4-377

actorPoses
Class: drivingScenario

Positions, velocities, and orientations of actors in driving scenario

Syntax
poses = actorPoses(sc)

Description
poses = actorPoses(sc) returns the current poses (positions, velocities, and
orientations) for all actors in the driving scenario, sc. Actors include Actor class objects
and Vehicle class objects. Poses components are relative to scenario coordinates.

Input Arguments
sc — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.
Example: drivingScenario

Output Arguments
poses — Actor poses in scenario coordinates
structures | array of structures

Actor poses in scenario coordinates, returned as a structure or array of structures. Poses
are the positions and orientation of actors and their rates of change. The pose structure
contains these fields:

4 Objects in Automated Driving System Toolbox

4-378

Field Description
ActorID Scenario-defined actor identifier
Position Position of actor, specified as a real-valued

1-by-3 vector. Units are in meters.
Velocity Velocity of actor, specified as a real-valued

1-by-3 vector. Units are in meters per
second.

Roll Roll angle of actor, specified as a scalar.
Units are in degrees.

Pitch Pitch angle of actor, specified as a scalar.
Units are in degrees.

Yaw Yaw angle of actor, specified as a scalar.
Units are in degrees.

AngularVelocity Angular velocity of actor, specified as a
real-valued 1-by-3 vector. Units are in
degrees per second.

See Actor and Vehicle for full definitions of the structure fields.

Introduced in R2017a

 actorPoses

4-379

actorProfiles
Class: drivingScenario

Physical and radar properties of actors in driving scenario

Syntax
profiles = actorProfiles(sc)

Description
profiles = actorProfiles(sc) returns the physical and radar properties,
profiles, for all actors in a driving scenario, sc. Actors include Actor and Vehicle
class objects.

Input Arguments
sc — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.
Example: drivingScenario

Output Arguments
profiles — Actor profiles
array of structures

Actor profiles, returned as an array of structures. Each profile contains the physical and
radar properties of an actor. The structure contains these fields.

4 Objects in Automated Driving System Toolbox

4-380

Field Description
ActorID Scenario-defined actor identifier
ClassID Classification identifier
Length Length of actor
Width Width of actor
Height Height of actor
OriginOffset Displacement from the bottom center of the

actor that defines the rotational center of
the actor. For vehicles, the center is the
point on the ground beneath the center of
the rear axle

RCSPattern Radar cross-section pattern matrix.
RCSAzimuthAngle Azimuth angles corresponding to rows of

RCSPattern
RCSElevationAngle Elevation angles corresponding to columns

of RCSPattern

See Actor and Vehicle for full definitions of the structure fields.

Introduced in R2017a

 actorProfiles

4-381

advance
Class: drivingScenario

Advance driving scenario simulation by one time step

Syntax
isrunning = advance(sc)

Description
isrunning = advance(sc) advances the driving scenario simulation, sc, by one time
step. To specify the step time, use the SampleTime property. The method returns the
status, isrunning, of the simulation.

Input Arguments
sc — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.
Example: drivingScenario

Output Arguments
isrunning — Run-state of simulation
0 | 1

The run-state of the simulation, returned as 0 or 1. If isrunning is 1, the simulation is
running. If isrunning 0, the simulation has stopped. A simulation runs until at least one
of these conditions are met:

4 Objects in Automated Driving System Toolbox

4-382

• The simulation time exceeds the simulation stop time. To specify the stop time, use the
StopTime property of sc.

• Any actor or vehicle reaches the end of its assigned trajectory. The assigned trajectory
is specified by the most recent call to the trajectory method.

The advance method updates actors and vehicles only if they have an assigned trajectory.
To update actors and vehicles that have no assigned trajectories, you can set the
Position, Velocity, Roll, Pitch,Yaw, or AngularVelocity properties at any time
during simulation.

Introduced in R2017a

 advance

4-383

vehicle
Class: drivingScenario

Create a vehicle within driving scenario

Syntax
vc = vehicle(sc)
vc = vehicle(sc,Name,Value)

Description
vc = vehicle(sc) adds a driving scenario vehicle Vehicle object, vc, to the driving
scenario, sc. The method creates a vehicle with default property values. Vehicles are
cuboid (box shaped) objects. A vehicle is an actor with additional properties.

vc = vehicle(sc,Name,Value) adds a vehicle with additional options specified by
one or more Name,Value pair arguments. Name is a property name and Value is the
corresponding value. Name must appear inside single quotes (''). You can specify several
name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN. Any
unspecified properties take default values.

Input Arguments
sc — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.
Example: drivingScenario

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

4 Objects in Automated Driving System Toolbox

4-384

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Length — Length of vehicle
4.7 (default) | positive scalar

Length of vehicle, specified as a positive scalar. Units are in meters.
Example: 5.5
Data Types: double

Width — Width of vehicle
1.8 (default) | positive scalar

Width of vehicle, specified as a positive scalar. Units are in meters.
Example: 2.0
Data Types: double

Height — Height of vehicle
1.4 (default) | positive scalar

Height of vehicle, specified as a positive scalar. Units are in meters.
Example: 2.1
Data Types: double

FrontOverhang — Front overhang of vehicle
0.9 (default) | nonnegative scalar

Front overhang of vehicle, specified as a nonnegative scalar. The front overhang is the
distance that the vehicle extends forward beyond the front axle. Units are in meters.
Data Types: double

RearOverhang — Rear overhang of vehicle
1.0 (default) | nonnegative scalar

Rear overhang of vehicle, specified as a nonnegative scalar. The rear overhang is the
distance that the vehicle extends rearward beyond the rear axle. Units are in meters.
Data Types: double

 vehicle

4-385

Wheelbase — Distance between axles
2.8 (default) | positive scalar

The distance between axles, specified as a positive scalar. Units are in meters.
Data Types: double

Position — Position of vehicle center
[0 0 0] (default) | real-valued three-element vector

Position of the rotational center of a vehicle, specified as a real-valued three-element
vector. The rotational center of a vehicle is the midpoint of its rear axle. The vehicle
extends rearward by a distance equal to the rear overhang. The vehicle extends forward a
distance equal to the sum of the wheelbase and forward overhang. The Position
property specifies the position of this center. The Velocity property specifies the
velocity of the center. Units are in meters.
Example: [10;50;0]
Data Types: double

Velocity — Velocity of vehicle
[0 0 0] (default) | real-valued three-element vector

Velocity of vehicle, specified as a real-valued three-element vector representing the (x,y,z)
velocity components of the vehicle. The Velocity property specifies the velocity of the
center specified by Position. Units are in meters per second.
Example: [-4;7;10]
Data Types: double

Roll — Roll angle of = vehicle
0 (default) | scalar

Roll angle of vehicle, specified as a scalar. Roll is the clockwise angle of rotation of the
vehicle around the x-axis. Units are in degrees.
Example: -1
Data Types: double

Pitch — Pitch angle of vehicle
0 (default) | scalar

4 Objects in Automated Driving System Toolbox

4-386

Pitch angle of vehicle, specified as a scalar. Pitch is the clockwise angle of rotation of the
vehicle around the y-axis. Units are in degrees.
Example: 5.8
Data Types: double

Yaw — Yaw angle of vehicle
0 (default) | scalar

Yaw angle of vehicle, specified as a scalar. Yaw is the clockwise angle of rotation of the
vehicle around the z-axis. Units are in degrees.
Example: -0.4
Data Types: double

AngularVelocity — Angular rotation velocity of vehicle
[0 0 0] (default) | real-valued three-element row vector

Angular rotation velocity of vehicle, specified as a real-valued three-element row vector.
The vector defines the components of the angular velocity vector in (x,y,z) scenario
coordinates. Units are in degrees per second.

RCSPattern — Radar cross-section pattern of vehicle
[10 10; 10 10] (default) | real-valued Q-by-P matrix

Radar cross-section (RCS) pattern of vehicle, specified as a real-valued Q-by-P matrix. Q
is the number of elevation angles specified by the RCSElevationAngles property. P is
the number of azimuth angles specified by the RCSAzimuthAngles property. The radar
cross-section pattern is a function of azimuth and elevation. Units are in dBsm.
Example: [5.8 5.9 5.9]
Data Types: double

RCSAzimuthAngles — Azimuth angles of radar cross-section pattern
[-180 180] (default) | real-valued P-length vector

Azimuth angles of radar cross-section pattern, specified as a real-valued P-element vector.
Azimuth angles define the angle coordinates of the rows of the radar cross-section
specified by the RCSPattern property. Units are in degrees. Azimuth angles lie from –
180° to 180°.
Example: [-90:90]

 vehicle

4-387

Data Types: double

RCSElevationAngles — Elevation angles of radar cross-section pattern
[-90 90] (default) | real-valued P-element vector

Elevation angles of radar cross-section pattern, specified as a real-valued P-element
vector. Elevation angles define the angle coordinates of the columns of the radar cross-
section specified by the RCSPattern property. Units are in degrees. Elevation angles lie
from –90° to 90°.
Example: [0:90]
Data Types: double

ClassID — Classification identifier
0 (default) | nonnegative integer

Classification identifier, specified as a nonnegative integer. You can define your own actor
classification scheme and assign ClassIDvalues to actors according to the scheme. The
value of 0 is reserved for an object of unknown or unassigned class.
Example: 5
Data Types: double

Output Arguments
vc — Scenario vehicle
Vehicle object

Scenario vehicle, returned as a Vehicle object.

Methods
path (To be removed) Create actor or vehicle path in driving scenario
chasePlot Egocentric projective perspective plot
roadBoundaries Show road boundaries
targetOutlines Outlines of targets viewed by actor
targetPoses Target positions and orientations seen from an actor
trajectory Create actor or vehicle trajectory in driving scenario

4 Objects in Automated Driving System Toolbox

4-388

Introduced in R2017a

 vehicle

4-389

plot
Class: drivingScenario

Create driving scenario plot

Syntax
plot(sc)
plot(sc,Name,Value)

Description
plot(sc) creates a 3-D plot with orthonormal perspective, as seen from immediately
above the driving scenario, sc.

plot(sc,Name,Value) specifies one or more Name,Value pair arguments. Name is a
property name and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. Any unspecified properties take default values.

Tip To rotate any plot, in the figure window, select View > Camera Toolbar.

Input Arguments
sc — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.
Example: drivingScenario

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

4 Objects in Automated Driving System Toolbox

4-390

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Parent — Axes object
axes object

Axes object in which to draw the plot. If you do not specify Parent, a new figure is
created.

Centerline — Enable display of road center line
'off' (default) | 'on'

Enable the display of the road center line, specified as 'off' or 'on'. A road center line
follows the middle of the road segment.
Data Types: char | string

RoadCenters — Display road centers
'off' (default) | 'on'

Display road centers, specified as 'off' or 'on'. If 'on', the road centers used to define
the roads are shown in the plot.
Data Types: char | string

Waypoints — Display actor waypoints
'off' (default) | 'on'

Display actor waypoints on plot, specified as 'off' or 'on'.
Data Types: char | string

Introduced in R2017a

 plot

4-391

road
Class: drivingScenario

Add a road to driving scenario

Syntax
road(sc,roadcenters)
road(sc,roadcenters,roadwidth)
road(sc,roadcenters,roadwidth,bankingangle)
road(sc,roadcenters,'Lanes',ls)

Description
road(sc,roadcenters) adds a road to the driving scenario, sc. You specify the road
shape using a set of road centers, roadcenters, at discrete points.

road(sc,roadcenters,roadwidth) also specifies the width of the road, roadwidth.

road(sc,roadcenters,roadwidth,bankingangle) also specifies the banking angle
of the road, bankingangle.

road(sc,roadcenters,'Lanes',ls) specifies the road using a lanespec object. Do
not specify roadwidth when using this syntax. bankingangle is an optional argument.

Input Arguments
sc — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.
Example: sc = drivingScenario

roadcenters — Road centers used to define road
real-valued N-by-2 matrix | real-valued N-by-3 matrix

4 Objects in Automated Driving System Toolbox

4-392

Road centers used to define a road, specified as a real-valued N-by-2 or N-by-3 matrix.
Road centers determine the center line of the road at discrete points. When
roadcenters is an N-by-3 matrix, each row specifies the x, y, and z-coordinates of a road
center. If roadcenters is an N-by-2 matrix, the z-coordinate is zero. If the first row of
the matrix is the same as the last row, the road is a loop. Units are in meters.
Data Types: double

roadwidth — Width of road
6.0 (default) | positive scalar

Width of road, specified as a positive scalar. The width is constant along the entire road.
Units are in meters.
Data Types: double

bankingangle — Banking angle of road
0 (default) | real-valued N-by-1 vector

Banking angle of road, specified as a real-valued N-by-1 vector. N is the number of road
centers. The banking angle is the roll angle of the road along the direction of the road.
Units are in degrees.
Data Types: double

'Lanes' — Lane specification
lane specification object

Lane specification, specified as a name,value pair consisting of 'Lanes' and a lane
specification object. For description of lane specifications, see lanespec. For a
description of lane markings, see laneMarking.
Data Types: double

Algorithms
This method creates a road for an actor to follow in a scenario. You specify the road using
N two-dimensional or three-dimensional waypoints. Each of the N - 1 segments between
waypoints defines a curve whose curvature varies linearly with distance along the
segment. The method fits a piecewise clothoid curve to the (x,y)-coordinates of the
waypoints by matching the curvature on both sides of the waypoint. For a non-closed
curve, the curvature at the first and last waypoint is zero. If the first and last waypoints

 road

4-393

coincide, then the curvatures before and after the endpoints are matched. The z-
coordinates of the road are interpolated using a shape-preserving piecewise cubic curve.

See Also
drivingScenario | laneMarking | lanespec

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-394

roadNetwork
Class: drivingScenario

Add road network to driving scenario

Syntax
roadNetwork(scenario,'OpenDRIVE',filePath)

Description
roadNetwork(scenario,'OpenDRIVE',filePath) imports roads and lanes from an
OpenDRIVE road network file into a driving scenario. This method supports OpenDRIVE
format specification version 1.4H [1].

Input Arguments
scenario — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object. scenario must contain no
roads and no other OpenDRIVE road network.

filePath — Path to valid OpenDRIVE file
character vector | string scalar

Path to a valid OpenDRIVE file of type .xml or .xodr, specified as a character vector or
string scalar.
Example: 'OpenDRIVE','C:\Desktop\myRoadNetwork.xodr'

Examples

 roadNetwork

4-395

Import OpenDRIVE Road Network into Driving Scenario

Create an empty driving scenario.

scenario = drivingScenario;

Import an OpenDRIVE road network into the scenario.

filePath = fullfile(matlabroot,'examples','driving','intersection.xodr');
roadNetwork(scenario,'OpenDRIVE',filePath);

Plot the scenario and zoom in on the road network.

plot(scenario)
zoom(5)

4 Objects in Automated Driving System Toolbox

4-396

Limitations
• You can import only lanes and roads. The import of road objects and traffic signals is

not supported.
• OpenDRIVE files containing large road networks can take up to several minutes to

load. Examples of large road networks include ones that model the roads of a city or
ones with roads that are thousands of meters long.

• Lanes with variable widths are not supported. The width is set to the highest width
found within that lane. For example, if a lane has a width that varies from 2 meters to
4 meters, the method sets the lane width to 4 meters throughout.

• Roads with multiple lane marking styles are not supported. The method applies the
first found marking style to all lanes in the road. For example, if a road has Dashed
and Solid lane markings, the method applies Dashed lane markings throughout.

• Lane marking styles Bott Dots, Curbs, and Grass are not supported. If imported
roads have these lane marking styles, the method sets their lane markings to the
default style, as determined by the number of lanes in the road.

References
[1] Dupuis, Marius, et al. OpenDRIVE Format Specification. Revision 1.4, Issue H,

Document No. VI2014.106. Bad Aibling, Germany: VIRES Simulationstechnologie
GmbH, November 4, 2015.

See Also
actor | drivingScenario | trajectory | vehicle

External Websites
opendrive.org

Introduced in R2018b

 roadNetwork

4-397

http://opendrive.org/

record
Class: drivingScenario

Run driving scenario and record actor states

Syntax
rec = record(sc)

Description
rec = record(sc) returns a record, rec, of the evolution of the simulation of the
driving scenario, sc.

Input Arguments
sc — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.
Example: drivingScenario

Output Arguments
rec — Record of actor and vehicle states during simulation
M-by-1 vector of structures

A record of actor and vehicle states during the simulation, returned as an M-by-1 vector
of structures. M is the number of time steps in the simulation. Each record corresponds to
a simulation time step. The structure has these fields:

SimulationTime
ActorPoses

4 Objects in Automated Driving System Toolbox

4-398

The SimulationTime field contains the simulation time of the record. ActorPoses is an
N-by-1 vector of structures, where N is the number of actors, including vehicles. Each
ActorPoses structure contains these fields.

Field Meaning
ActorID Scenario-defined actor identifier
Position Position of actor in scenario coordinates
Velocity Velocity of actor in scenario coordinates
Roll Roll angle of actor
Pitch Pitch angle of actor
Yaw Yaw angle of actor
AngularVelocity Angular velocity of actor

See Actor and Vehicle for full definitions of the structure fields for each actor.
Data Types: struct

Introduced in R2017a

 record

4-399

restart
Class: drivingScenario

Restart driving scenario simulation from beginning

Syntax
restart(sc)

Description
restart(sc) restarts the simulation of the driving scenario, sc, from the beginning. The
method sets the SimulationTime property of the driving scenario to zero.

Input Arguments
sc — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.
Example: drivingScenario

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-400

updatePlots
Class: drivingScenario

Update driving scenario plots

Syntax
updatePlots(sc)

Description
updatePlots(sc) updates all existing plots for the driving scenario, sc. Use this
method after you update any actor properties and want to refresh the plot. This method
does not advance the simulation.

Input Arguments
sc — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.
Example: drivingScenario

Introduced in R2017a

 updatePlots

4-401

Actor class
Actor belonging in driving scenario

Description
The Actor class defines an actor object belonging to a driving scenario. Actors are
cuboid (box-shaped) objects.

Properties
ActorID — Scenario-defined actor identifier
1 (default) | positive integer

This property is read-only.

Scenario-defined actor identifier specified as a positive integer. The scenario
automatically assigns ActorID values to actors, including vehicles.
Example: 1
Data Types: double

ClassID — Classification identifier
0 (default) | nonnegative integer

Classification identifier specified as a nonnegative integer. You can define your own actor
classification scheme and assign ClassIDvalues to actors according to the scheme. The
value of 0 is reserved for an object of unknown or unassigned class.
Example: 5
Data Types: double

Position — Position of actor center
[0 0 0] (default) | real-valued three-element vector

Position of the center of an actor, specified as a real-valued three-element vector. The
height, H, length, L, and width, W, determine the dimensions of the actor. The center of

4 Objects in Automated Driving System Toolbox

4-402

the actor is the midpoint of its length, L/2, and the midpoint of its width, W/2, on the
bottom of the cuboid. The Position property specifies the position of this center. The
Velocity property specifies the velocity of the center. Units are in meters.
Example: [10;50;0]
Data Types: double

Velocity — Velocity of actor
[0 0 0] (default) | real-valued three-element vector

Velocity of actor, specified as a real-valued three-element vector representing the (x,y,z)
velocity components of the actor. The Velocity property specifies the velocity of the
actor center specified by Position. Units are in meters per second.
Example: [-4;7;10]
Data Types: double

Yaw — Yaw angle of the actor
0 (default) | scalar

Yaw angle of actor, specified as a scalar. Yaw is the clockwise angle of rotation of the actor
around the z-axis. Units are in degrees.
Example: -0.4
Data Types: double

Pitch — Roll angle of the actor
0 (default) | scalar

Pitch angle of actor, specified as a scalar. Pitch is the clockwise angle of rotation of the
actor around the y-axis. Units are in degrees.
Example: 5.8
Data Types: double

Roll — Roll angle of the actor
0 (default) | scalar

Roll angle of actor, specified as a scalar. Roll is the clockwise angle of rotation of the actor
around the x-axis. Units are in degrees.
Example: -10

 Actor class

4-403

Data Types: double

AngularVelocity — Angular rotation velocity of actor
[0 0 0] (default) | real-valued three-element row vector

Angular rotation velocity of actor, specified as a real-valued three-element row vector. The
vector defines the components of the angular velocity vector in (x,y,z) scenario
coordinates. Units are in degrees per second.

Length — Length of actor
4.7 (default) | positive scalar

Length of actor, specified as a positive scalar. Units are in meters.
Example: 5.5
Data Types: double

Width — Width of actor
1.8 (default) | positive scalar

Width of actor, specified as a positive scalar. Units are in meters.
Example: 3.0
Data Types: double

Height — Height of actor
1.4 (default) | positive scalar

Height of actor, specified as a positive scalar. Units are meters.
Example: 2.1
Data Types: double

RCSPattern — Radar cross-section pattern of actor
[10 10; 10 10] (default) | real-valued Q-by-P matrix

Radar cross-section (RCS) pattern of actor, specified as a real-valued Q-by-P matrix. The
radar cross-section pattern is a function of azimuth and elevation. Q is the number of
elevation angles specified by the RCSElevationAngles property. P is the number of
azimuth angles specified by the RCSAzimuthAngles property. Units are in dBsm.
Example: 5.8

4 Objects in Automated Driving System Toolbox

4-404

Data Types: double

RCSAzimuthAngles — Azimuth angles of radar cross-section pattern
[-180 180] (default) | real-valued P-length vector

Azimuth angles of the radar cross-section pattern, specified as a real-valued P-element
vector. Each entry defines the azimuth angle of the corresponding column of the radar
cross-section specified by the RCSPattern property. Units are in degrees. Azimuth angles
lie in the range from –180° to 180°.
Example: [-90:90]
Data Types: double

RCSElevationAngles — Elevation angles of radar cross-section pattern
[-90 90] (default) | real-valued Q-length vector

Elevation angles of the radar cross-section pattern, specified as a real-valued Q-element
vector. Each entry defines the elevation angle of the corresponding row of the radar
cross-section specified by the RCSPattern property. Units are in degrees. Elevation
angles lie in the range from –90° to 90°.
Example: [0:90]
Data Types: double

Introduced in R2017a

 Actor class

4-405

Vehicle class
Vehicle class for use in a driving scenario

Description
The Vehicle class defines a vehicle object belonging to a driving scenario. Vehicles are
cuboid (box-shaped) objects.

Properties
ActorID — Scenario-defined vehicle identifier
positive integer

This property is read-only.

Scenario-defined vehicle identifier, specified as a positive integer. The scenario
automatically assigns ActorID values to vehicles.
Example: 1
Data Types: double

ClassID — Classification identifier
0 (default) | nonnegative integer

Classification identifier, specified as a nonnegative integer. You can define your own actor
classification scheme and assign ClassIDvalues to actors according to the scheme. The
value of 0 is reserved for an object of unknown or unassigned class.
Example: 5
Data Types: double

Position — Position of vehicle center
[0 0 0] (default) | real-valued three-element vector

Position of the rotational center of a vehicle, specified as a real-valued three-element
vector. The rotational center of a vehicle is the midpoint of its rear axle. The vehicle

4 Objects in Automated Driving System Toolbox

4-406

extends rearward by a distance equal to the rear overhang. The vehicle extends forward a
distance equal to the sum of the wheelbase and forward overhang. The Position
property specifies the position of this center. The Velocity property specifies the
velocity of the center. Units are in meters.
Example: [10;50;0]
Data Types: double

Velocity — Velocity of vehicle
[0 0 0] (default) | real-valued three-element vector

Velocity of vehicle, specified as a real-valued three-element vector representing the (x,y,z)
velocity components of the vehicle. The Velocity property specifies the velocity of the
vehicle center specified by Position. Units are in meters per second.
Example: [-4;7;10]
Data Types: double

Yaw — Yaw angle of vehicle
0 (default) | scalar

Yaw angle of vehicle, specified as a scalar. Yaw is the clockwise angle of rotation of the
vehicle around the z-axis. Units are in degrees.
Example: -0.4
Data Types: double

Pitch — Pitch angle of vehicle
0 (default) | scalar

Pitch angle of vehicle, specified as a scalar. Pitch is the clockwise angle of rotation of the
vehicle around the y-axis. Units are in degrees.
Example: 5.8
Data Types: double

Roll — Roll angle of = vehicle
0 (default) | scalar

Roll angle of vehicle, specified as a scalar. Roll is the clockwise angle of rotation of the
vehicle around the x-axis. Units are in degrees.

 Vehicle class

4-407

Example: -1
Data Types: double

AngularVelocity — Angular rotation velocity of vehicle
[0 0 0] (default) | real-valued three-element row vector

Angular rotation velocity of vehicle, specified as a real-valued three-element row vector.
The vector defines the components of the angular velocity vector in (x,y,z) scenario
coordinates. Units are in degrees per second.

Length — Length of vehicle
4.7 (default) | positive scalar

Length of vehicle, specified as a positive scalar. Units are in meters.
Example: 5.5
Data Types: double

Width — Width of vehicle
1.8 (default) | positive scalar

Width of vehicle, specified as a positive scalar. Units are in meters.
Example: 2.0
Data Types: double

Height — Height of vehicle
1.4 (default) | positive scalar

Height of vehicle, specified as a positive scalar. Units are in meters.
Example: 2.1
Data Types: double

RCSPattern — Radar cross-section pattern of vehicle
[10 10; 10 10] (default) | real-valued Q-by-P matrix

Radar cross-section (RCS) pattern of vehicle, specified as a real-valued Q-by-P matrix. Q
is the number of elevation angles specified by the RCSElevationAngles property. P is
the number of azimuth angles specified by the RCSAzimuthAngles property. The radar
cross-section pattern is a function of azimuth and elevation. Units are in dBsm.

4 Objects in Automated Driving System Toolbox

4-408

Example: [5.8 5.9 5.9]
Data Types: double

RCSAzimuthAngles — Azimuth angles of radar cross-section pattern
[-180 180] (default) | real-valued P-length vector

Azimuth angles of radar cross-section pattern, specified as a real-valued P-element vector.
Azimuth angles define the angle coordinates of the rows of the radar cross-section
specified by the RCSPattern property. Units are in degrees. Azimuth angles lie from –
180° to 180°.
Example: [-90:90]
Data Types: double

RCSElevationAngles — Elevation angles of radar cross-section pattern
[-90 90] (default) | real-valued Q-element vector

Elevation angles of radar cross-section pattern, specified as a real-valued Q-element
vector. Elevation angles define the angle coordinates of the columns of the radar cross-
section specified by the RCSPattern property. Units are in degrees. Elevation angles lie
from –90° to 90°.
Example: [0:90]
Data Types: double

FrontOverhang — Front overhang of vehicle
0.9 (default) | nonnegative scalar

The front overhang of a vehicle, specified as a nonnegative scalar. The front overhang is
the distance that the vehicle extends beyond the front axle. Units are in meters.
Data Types: double

RearOverhang — Rear overhang of vehicle
1.0 (default) | nonnegative scalar

The rear overhang of a vehicle, specified as a nonnegative scalar. The rear overhang is
the distance that the vehicle extends beyond the rear axle. Units are in meters.
Data Types: double

Wheelbase — Distance between axles
2.8 (default) | positive scalar

 Vehicle class

4-409

The distance between axles, specified as a positive scalar. Units are in meters.
Data Types: double

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-410

path
(To be removed) Create actor or vehicle path in driving scenario

Note path will be removed in a future release. Use trajectory instead.

Syntax
path(ac,waypoints)
path(ac,waypoints,speed)

Description
path(ac,waypoints) creates a path for an actor or vehicle, ac, using a set of
waypoints. The actor follows the path at 30 m/s.

path(ac,waypoints,speed) also specifies the actor speed.

Input Arguments
ac — Scenario actor
Actor object | Vehicle object

Scenario actor, specified as an Actor or Vehicle object. To create actors, use the actor
or vehicle method.

waypoints — Path waypoints
real-valued N-by-2matrix | real-valued N-by-3 matrix

Path waypoints, specified as a real-valued N-by-2 or N-by-3 matrix. If you specify the
waypoints as an N-by-3 matrix, each row of the matrix represents the (x,y,z) coordinates
of a waypoint. If you specify the waypoints as an N-by-2 matrix, each row represents the
(x,y) coordinates of a waypoint. The z-coordinates of the waypoints are zero. All
coordinates belong to the scenario coordinate system. Units are in meters.

 path

4-411

Example: [1 0 0; 2 7 7]
Data Types: double

speed — Actor speed
30.0 | positive scalar | N-element vector of nonnegative values

Actor speed, specified as a positive scalar or N-element vector of nonnegative values. N is
the number of waypoints. When speed is a scalar, the speed is constant throughout the
actor motion. When speed is a vector, it specifies the speed at each waypoint. Speeds are
interpolated between waypoints. speed can be zero at any waypoint but cannot be zero at
two consecutive waypoints. Units are meters per second.
Example: [10,8,10,11]

Algorithms
This method creates a path for an actor to follow in a scenario. You specify the path using
N two-dimensional or three-dimensional waypoints. Each of the N-1 segments between
waypoints defines a curve whose curvature varies linearly with distance along the
segment. The method fits a piecewise clothoid curve to the (x,y)-coordinates of the
waypoints by matching the curvature on both sides of the waypoint. For a nonclosed
curve, the curvature at the first and last waypoint is zero. If the first and last waypoints
coincide, then the curvatures before and after the endpoints are matched. The z-
coordinates of the path are interpolated using a shape-preserving piecewise cubic curve.

You can specify speed as a scalar or a vector. When speed is a scalar, the actor follows the
path with constant speed. When speed is an N-element vector, speed is linearly
interpolated between waypoints. Setting the speed to zero at two consecutive waypoints
creates a stationary actor.

See Also
trajectory

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-412

trajectory
Create actor or vehicle trajectory in driving scenario

Syntax
trajectory(ac,waypoints,speed)

Description
trajectory(ac,waypoints,speed) creates a trajectory for an actor or vehicle, ac,
from a set of waypoints. The actor follows the trajectory at the specified speed, speed.

Input Arguments
ac — Scenario actor
Actor object | Vehicle object

Scenario actor, specified as an Actor or Vehicle object. To create actors, use the actor
or vehicle method.

waypoints — Trajectory waypoints
real-valued N-by-2 matrix | real-valued N-by-3 matrix

Trajectory waypoints, specified as a real-valued N-by-2 or N-by-3 matrix. If you specify the
waypoints as an N-by-3 matrix, each row of the matrix represents the (x,y,z) coordinates
of a waypoint. If you specify the waypoints as an N-by-2 matrix, each row represents the
(x,y) coordinates of a waypoint. The z-coordinates of the waypoints are zero. All
coordinates belong to the scenario coordinate system. Units are in meters.
Example: [1 0 0; 2 7 7; 3 8 8]
Data Types: double

speed — Actor speed at waypoints
30.0 | positive scalar | N-element vector of nonnegative values

 trajectory

4-413

Actor speed at waypoints, specified as a positive scalar or N-element vector of
nonnegative values. N is the number of waypoints. When speed is a scalar, the speed is
constant throughout the actor motion. When speed is a vector, it specifies the speed at
each waypoint. Speeds are interpolated between waypoints. speed can be zero at any
waypoint but cannot be zero at two consecutive waypoints. Units are in meters per
second.
Example: [10,8,9]

Algorithms
This method creates a trajectory for an actor to follow in a scenario. A trajectory consists
of the path followed by an object and its speed along the path. You specify the path using
N two-dimensional or three-dimensional waypoints. Each of the N-1 segments between
waypoints defines a curve whose curvature varies linearly with distance along the
segment. The method fits a piecewise clothoid curve to the (x,y)-coordinates of the
waypoints by matching the curvature on both sides of the waypoint. For a non-closed
curve, the curvature at the first and last waypoint is zero. If the first and last waypoints
coincide, then the curvatures before and after the endpoints are matched. The z-
coordinates of the trajectory are interpolated using a shape-preserving piecewise cubic
curve.

You can specify speed as a scalar or a vector. When speed is a scalar, the actor follows the
trajectory with constant speed. When speed is an N-element vector, speed is linearly
interpolated between waypoints. Setting the speed to zero at two consecutive waypoints
creates a stationary actor.

Introduced in R2018a

4 Objects in Automated Driving System Toolbox

4-414

chasePlot
Egocentric projective perspective plot

Syntax
chasePlot(ac)
chasePlot(ac,Name,Value)

Description
chasePlot(ac) adds an egocentric projective perspective plot to the scenario. The view
is as seen from immediately behind the actor.

chasePlot(ac,Name,Value) adds a plot using one or more Name,Value pair
arguments. Name is a property name and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value pair arguments in
any order as Name1,Value1,...,NameN,ValueN. Any unspecified arguments take
default values.

Input Arguments
ac — Scenario actor
Actor object | Vehicle object

Scenario actor, specified as an Actor or Vehicle object. To create actors, use the actor
or vehicle method.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 chasePlot

4-415

Example: chasePlot('Parent',ax,'Centerline','on','Waypoints','on')

Parent — Axes object
axes object

Axes object in which to draw the plot. If you leave Parent unspecified, a new figure is
created.

Centerline — Paint road center line
'off' (default) | 'on'

Paint road center line on plot, specified as 'off' or 'on'. The display of the center line
follows normal road conventions. Center lines are not displayed as continuous through an
intersection or road split.
Data Types: char | string

RoadCenters — Display road centers
'off' (default) | 'on'

Display road centers, specified as 'off' or 'on'. If 'on', the road centers used to define
the roads are shown in the plot.
Data Types: char | string

Waypoints — Show actor waypoints
'off' (default) | 'on'

Show actor waypoints on plot, specified as 'off' or 'on'.
Data Types: char | string

ViewHeight — Height of plot viewpoint
1.5 times actor height (default) | positive scalar

Height of plot viewpoint, specified as a positive scalar. Height is with respect to the
bottom of the actor. Units are in meters.
Data Types: double

ViewLocation — Location of plot viewpoint
2.5 times actor length (default) | 1-by-2 real-valued vector

The location of the plot viewpoint, specified as a 1-by-2 real-valued vector. The viewpoint,
[x y], is with respect to the cuboid center in the cuboid coordinate system. The default

4 Objects in Automated Driving System Toolbox

4-416

location of the viewpoint is behind the cuboid center,[2.5*length,0]. Units are in
meters.
Data Types: double

ViewRoll — Roll angle of view orientation
0 (default) | scalar

Roll angle of view orientation, specified as a scalar. Units are in degrees.
Data Types: double

ViewPitch — Pitch angle of view orientation
0 (default) | scalar

Pitch angle of view orientation, specified as a scalar. Units are in degrees.
Data Types: double

ViewYaw — Yaw angle of view orientation
0 (default) | scalar

Yaw angle of view orientation, specified as a scalar. Units are in degrees.
Data Types: double

Introduced in R2017a

 chasePlot

4-417

roadBoundaries
Show road boundaries

Syntax
rbdry = roadBoundaries(sc)
rbdry = roadBoundaries(ac)

Description
rbdry = roadBoundaries(sc) returns the road boundaries, rbdry, in a driving
scenario, sc.

rbdry = roadBoundaries(ac) returns the road boundaries followed by the actor, ac,
in a driving scenario.

Input Arguments
sc — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.
Example: drivingScenario

ac — Scenario actor
Actor object | Vehicle object

Scenario actor, specified as an Actor or Vehicle object. To create actors, use the actor
or vehicle method.

4 Objects in Automated Driving System Toolbox

4-418

Output Arguments
rbdry — Road boundaries
cell array

Road boundaries, returned as a cell array. Each cell of the array contains a real-valued N-
by-3 matrix. Each row of the matrix corresponds to the (x,y,z) coordinates of a vertex of
the road boundary.

When the input argument is a driving scenario, the road coordinates are with respect to
the scenario coordinate system. When the input argument is an actor, the road
coordinates are with respect to the actor coordinate system.
Data Types: double

Introduced in R2017a

 roadBoundaries

4-419

targetPoses
Target positions and orientations seen from an actor

Syntax
poses = targetPoses(ac)

Description
poses = targetPoses(ac) returns the poses of all targets in a scenario with respect
to the ego actor ac (see “Ego and target actors” on page 4-421). Targets include vehicles.
Pose defines the position, velocity, and orientation of a target with respect to the ego
coordinate system belonging to the actor. Pose also includes rates of change of position
and orientation. The actor must be previously added to the driving scenario via an actor
or vehicle method. A target is an actor located with respect to the coordinate system of
another actor.

Input Arguments
ac — Scenario actor
Actor object | Vehicle object

Scenario actor, specified as an Actor or Vehicle object. To create actors, use the actor
or vehicle method.

Output Arguments
poses — Scenario target poses
structure | array of structures

Scenario target poses, returned as a structure or an array of structures. The pose of the
input ego actor, ac, is not included. Pose consists of the position, velocity, and orientation
of a target and their rates of change. The returned structure has these fields:

4 Objects in Automated Driving System Toolbox

4-420

Field Description
ActorID Scenario-defined actor identifier
Position Position of actor, specified as a real-valued

1-by-3 vector. Units are in meters.
Velocity Velocity of actor, specified as a real-valued

1-by-3 vector. Units are in meters per
second.

Roll Roll angle of actor, specified as a scalar.
Units are in degrees.

Pitch Pitch angle of actor, specified as a scalar.
Units are in degrees.

Yaw Yaw angle of actor, specified as a scalar.
Units are in degrees.

AngularVelocity Angular velocity of actor, specified as a
real-valued 1-by-3 vector. Units are in
degrees per second.

The values of the Position, Velocity, Roll, Pitch, Yaw, and AngularVelocity
fields are with respect to the coordinate system of the input actor, ac. See Actor and
Vehicle for full definitions of the structure fields.

Definitions

Ego and target actors
In a driving scenario, you can specify one actor as the observer of all other actors, much
as the driver of a car observes all other cars. The observer actor is called the ego actor.
From the perspective of the ego actor, all other actors are the observed actors and are
called target actors or targets. Ego coordinates are coordinates centered and oriented
with reference to the ego actor. Driving scenario coordinates are world or global
coordinates.

See Also
birdsEyePlot | targetOutlines

 targetPoses

4-421

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-422

targetOutlines
Outlines of targets viewed by actor

Syntax
[position,yaw,length,width,originOffset,color] = targetOutlines(ac)

Description
[position,yaw,length,width,originOffset,color] = targetOutlines(ac)
returns the oriented rectangular outlines of all non-ego target actors belonging to a
driving scenario as viewed from a designated ego actor, ac (see “Ego and target actors”
on page 4-430). A target outline is the projection of the target actor cuboid into the x-y
plane of the local coordinate system of the ego actor. Target outline parameters are the
position, yaw, length, width, originOffset, and color output arguments. All
actors must have been previously added to the driving scenario using the actor or
vehicle methods of the drivingScenario class.

You can use the returned outlines as input arguments to the outline plotter in
birdsEyePlot. Then, call outlinePlotter to create a plotter object and use
plotOutline to plot the outlines of all the actors in a bird's-eye plot.

Examples

Show Target Outlines in Driving Scenario Simulation

Create a driving scenario and show how target outlines change as the simulation
advances.

Set up a driving scenario with a vehicle and a pedestrian

Set up a driving scenario consisting of two intersecting straight roads. Construct one
straight road segment to be 45 m long. The second straight road is 32 meters long and

 targetOutlines

4-423

intersects the first road. A car travelling at 12.0 m/s along the first road approaches a
running pedestrian crossing the intersection moving at 2.0 m/s.

s = drivingScenario('SampleTime',0.1,'StopTime',1);
road(s,[-10 0 0; 45 -20 0]);
road(s,[-10 -10 0; 35 10 0]);
ped = actor(s,'Length',0.4,'Width',0.6,'Height',1.7);
car = vehicle(s);
pedspeed = 2.0;
carspeed = 12.0;
trajectory(ped,[15 -3 0; 15 3 0],pedspeed);
trajectory(car,[-10 -10 0; 35 10 0],carspeed);

Create an egocentric chase plot for the vehicle

chasePlot(car,'Centerline','on')

4 Objects in Automated Driving System Toolbox

4-424

Create a bird's-eye plot of road boundaries and actors

Create an empty bird's-eye plot and add an outline plotter and lane boundary plotter.

bepPlot = birdsEyePlot('XLim',[-50 50],'YLim',[-40 40]);
outlineplotter = outlinePlotter(bepPlot);
laneplotter = laneBoundaryPlotter(bepPlot);
legend('off')

 targetOutlines

4-425

Run the simulation

At each simulation step:

• Update and display the chase plot road boundaries and target outline.
• Update the bird's-eye plotter for the road boundary and target outline. The plot

perspective is always with respect to the ego actor.

while advance(s)
 rb = roadBoundaries(car);
 [position,yaw,length,width,originOffset,color] = targetOutlines(car);

4 Objects in Automated Driving System Toolbox

4-426

 plotLaneBoundary(laneplotter,rb)
 plotOutline(outlineplotter,position, yaw, length, width, ...
 'OriginOffset',originOffset,'Color',color)
 pause(0.01)
end

 targetOutlines

4-427

Input Arguments
ac — Scenario actor
Actor object | Vehicle object

Scenario actor, specified as an Actor or Vehicle object. To create actors, use the actor
or vehicle method.

4 Objects in Automated Driving System Toolbox

4-428

Output Arguments
Rotational center of rectangle

position — Rotational center of rectangle
real-valued N-by-2 matrix

Rotational center of rectangle, returned as a real-valued N-by-2 matrix. N is the number
of target actors. Each row contains the x and y coordinates of the rotational center of the
target outline. Units are in meters.
Data Types: double

yaw — Yaw angle of target
real-valued N-element vector

Yaw angle of target about the rotational center, returned as a real-valued N-element
vector. N is the number of target actors. Each element contains the yaw angle of each
target. Yaw angles are measured in the counterclockwise direction as seen from above.
Units are in degrees.
Data Types: double

length — Length of rectangular outline of target
positive, real-valued N-element vector

Length of rectangular outline of target, returned as a real-valued N-element vector. N is
the number of target actors. Units are in meters.
Data Types: double

width — Width of rectangular outline of target
positive, real-valued N-element vector

Width of rectangular outline of target, returned as a real-valued N-element vector. N is
the number of target actors. Units are in meters.
Data Types: double

originOffset — Offset of rotational center from geometric center
real-valued N-by-2 matrix

Offset of target rotational center from geometric center, returned as a real-valued N-by-2
matrix. N is the number of target actors. Each row defines a 2D offset vector from the

 targetOutlines

4-429

geometric center of the rectangle to the rotational center of the rectangle. Vehicles
typically define this offset so that the rotational center rests directly beneath the rear axle
of the vehicle. Units are in meters.
Data Types: double

color — RGB representation of target colors
positive, real-valued N-by-3 matrix

RGB representation of target colors, returned as a nonnegative, real-valued N-by-3
matrix. N is the number of target actors.
Data Types: double

Definitions

Ego and target actors
In a driving scenario, you can specify one actor as the observer of all other actors, much
as the driver of a car observes all other cars. The observer actor is called the ego actor.
From the perspective of the ego actor, all other actors are the observed actors and are
called target actors or targets. Ego coordinates are coordinates centered and oriented
with reference to the ego actor. Driving scenario coordinates are world or global
coordinates.

See Also
birdsEyePlot | targetOutlines | targetPoses

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-430

radarDetectionGenerator System object
Generate radar detections for driving scenario

Description
The radarDetectionGenerator System object generates detections from a radar
sensor mounted on an ego vehicle. All detections are referenced to the coordinate system
of the ego vehicle. You can use the radarDetectionGenerator object in a scenario
containing actors and trajectories, which you can create by using a drivingScenario
object. The object can simulate real detections with added random noise and also
generate false alarm detections. In addition, you can use the
radarDetectionGenerator object to create input to a multiObjectTracker.

To generate radar detections:

1 Create the radarDetectionGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
sensor = radarDetectionGenerator
sensor = radarDetectionGenerator(Name,Value)

Description
sensor = radarDetectionGenerator creates a radar detection generator object with
default property values.

sensor = radarDetectionGenerator(Name,Value) sets properties using one or
more name-value pairs. For example,

 radarDetectionGenerator System object

4-431

radarDetectionGenerator('DetectionCoordinates','Sensor
Cartesian','MaxRange',200) creates a radar detection generator that reports
detections in the sensor Cartesian coordinate system and has a maximum detection range
of 200 meters. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

SensorIndex — Unique sensor identifier
positive integer

Unique sensor identifier, specified as a positive integer. This property distinguishes
detections that come from different sensors in a multisensor system.
Example: 5
Data Types: double

UpdateInterval — Required time interval between sensor updates
0.1 (default) | positive scalar

Required time interval between sensor updates, specified as a positive scalar. The
drivingScenario object calls the radar detection generator at regular time intervals.
The radar detector generates new detections at intervals defined by the
UpdateInterval property. The value of the UpdateInterval property must be an
integer multiple of the simulation time interval. Updates requested from the sensor
between update intervals contain no detections. Units are in seconds.
Example: 5
Data Types: double

SensorLocation — Sensor location
[3.4 0] (default) | [x y] vector

4 Objects in Automated Driving System Toolbox

4-432

Location of the radar sensor center, specified as an [x y] vector. The SensorLocation
and Height properties define the coordinates of the radar sensor with respect to the ego
vehicle coordinate system. The default value corresponds to a radar mounted at the
center of the front grill of a sedan. Units are in meters.
Example: [4 0.1]
Data Types: double

Height — Radar sensor height above ground plane
0.2 (default) | positive scalar

Radar sensor height above the ground plane, specified as a positive scalar. The height is
defined with respect to the vehicle ground plane. The SensorLocation and Height
properties define the coordinates of the radar sensor with respect to the ego vehicle
coordinate system. The default value corresponds to a radar mounted at the center of the
front grill of a sedan. Units are in meters.
Example: 0.3
Data Types: double

Yaw — Yaw angle of sensor
0 (default) | scalar

Yaw angle of radar sensor, specified as a scalar. The yaw angle is the angle between the
center line of the ego vehicle and the downrange axis of the radar sensor. A positive yaw
angle corresponds to a clockwise rotation when looking in the positive direction of the z-
axis of the ego vehicle coordinate system. Units are in degrees.
Example: -4
Data Types: double

Pitch — Pitch angle of sensor
0 (default) | scalar

Pitch angle of sensor, specified as a scalar. The pitch angle is the angle between the
downrange axis of the radar sensor and the x-y plane of the ego vehicle coordinate
system. A positive pitch angle corresponds to a clockwise rotation when looking in the
positive direction of the y-axis of the ego vehicle coordinate system. Units are in degrees.
Example: 3
Data Types: double

 radarDetectionGenerator System object

4-433

Roll — Roll angle of sensor
0 (default) | scalar

Roll angle of the radar sensor, specified as a scalar. The roll angle is the angle of rotation
of the downrange axis of the radar around the x-axis of the ego vehicle coordinate system.
A positive roll angle corresponds to a clockwise rotation when looking in the positive
direction of the x-axis of the coordinate system. Units are in degrees.
Example: -4
Data Types: double

FieldOfView — Azimuth and elevation fields of view of radar sensor
[20 5] | real-valued 1-by-2 vector of positive values

Azimuth and elevation fields of view of radar sensor, specified as a real-valued 1-by-2
vector of positive values, [azfov elfov]. The field of view defines the angular extent
spanned by the sensor. Each component must lie in the interval (0,180]. Targets outside of
the field of view of the radar are not detected. Units are in degrees.
Example: [14 7]
Data Types: double

MaxRange — Maximum detection range
150 | positive scalar

Maximum detection range, specified as a positive scalar. The radar cannot detect a target
beyond this range. Units are in meters.
Example: 200
Data Types: double

RangeRateLimits — Minimum and maximum detection range rates
[-100 100] | real-valued 1-by-2 vector

Minimum and maximum detection range rates, specified as a real-valued 1-by-2 vector.
The radar cannot detect a target out this range rate interval. Units are in meters per
second.
Example: [-20 100]
Dependencies

To enable this property, set the HasRangeRate property to true.

4 Objects in Automated Driving System Toolbox

4-434

Data Types: double

DetectionProbability — Probability of detecting a target
0.9 | positive scalar less than or equal to 1

Probability of detecting a target, specified as a positive scalar less than or equal to one.
This quantity defines the probability of detecting target that has a radar cross-section,
ReferenceRCS, at the reference detection range, ReferenceRange.

FalseAlarmRate — False alarm rate
1e-6 (default) | positive scalar

False alarm rate within a radar resolution cell, specified as a positive scalar in the range
[10–7,10–3]. Units are dimensionless.
Example: 1e-5
Data Types: double

ReferenceRange — Reference range for given probability of detection
100 (default) | positive scalar

Reference range for a given probability of detection, specified as a positive scalar. The
reference range is the range when a target having a radar cross-section specified by
ReferenceRCS is detected with a probability of specified by DetectionProbability.
Units are in meters.
Data Types: double

ReferenceRCS — Reference radar cross-section for given probability of detection
0 (default) | nonnegative scalar

Reference radar cross-section (RCS) for given probability of detection, specified as a
scalar. The reference RCS is the value at which a target is detected with probability
specified by DetectionProbability. Units are in dBsm.
Data Types: double

RadarLoopGain — Radar loop gain
scalar

This property is read-only.

Radar loop gain, specified as a scalar. Radar loop gain is related to the reported signal-to-
noise ratio of the radar, SNR, the target radar cross section, RCS, and target range, R by

 radarDetectionGenerator System object

4-435

SNR = RadarLoopGain + RCS - 40*log10(R)

SNR and RCS units are in dB and dBsm, respectively and range units are in meters.
RadarLoopGain depends on the DetectionProbability, ReferenceRange,
ReferenceRCS, and FalseAlarmRate property values. Units are in dB.
Data Types: double

AzimuthResolution — Azimuth resolution of radar
4 (default) | positive scalar

Azimuth resolution of the radar, specified as a positive scalar. The azimuth resolution
defines the minimum separation in azimuth angle at which the radar can distinguish two
targets. The azimuth resolution is typically the 3dB-downpoint in azimuth angle
beamwidth of the radar. Units are in degrees.
Data Types: double

ElevationResolution — Elevation resolution of radar
10 (default) | positive scalar

Elevation resolution of the radar, specified as a positive scalar. The elevation resolution
defines the minimum separation in elevation angle at which the radar can distinguish two
targets. The elevation resolution is typically the 3dB-downpoint in elevation angle
beamwidth of the radar. Units are in degrees.

Dependencies

To enable this property, set the HasElevation property to true.
Data Types: double

RangeResolution — Range resolution of radar
2.5 (default) | positive scalar

Range resolution of the radar, specified as a positive scalar. The range resolution defines
the minimum separation in range at which the radar can distinguish between two targets.
Units are in meters.
Data Types: double

RangeRateResolution — Range rate resolution of radar
0.5 (default) | positive scalar

4 Objects in Automated Driving System Toolbox

4-436

Range rate resolution of the radar, specified as a positive scalar. The range rate resolution
defines the minimum separation in range rate at which the radar can distinguish between
two targets. Units are in meters per second.

Dependencies

To enable this property, set the HasRangeRate property to true.
Data Types: double

AzimuthBiasFraction — Azimuth bias fraction
0.1 (default) | nonnegative scalar

Azimuth bias fraction of the radar, specified as a nonnegative scalar. The azimuth bias is
expressed as a fraction of the azimuth resolution specified in AzimuthResolution. Units
are dimensionless.
Data Types: double

ElevationBiasFraction — Elevation bias fraction
0.1 (default) | nonnegative scalar

Elevation bias fraction of the radar, specified as a nonnegative scalar. Elevation bias is
expressed as a fraction of the elevation resolution specified in ElevationResolution.
Units are dimensionless.

Dependencies

To enable this property, set the HasElevation property to true.
Data Types: double

RangeBiasFraction — Range bias fraction
0.05 (default) | nonnegative scalar

Range bias fraction of the radar, specified as a nonnegative scalar. Range bias is
expressed as a fraction of the range resolution specified in RangeResolution. Units are
dimensionless.
Data Types: double

RangeRateBiasFraction — Range rate bias fraction
0.05 (default) | nonnegative scalar

 radarDetectionGenerator System object

4-437

Range rate bias fraction of the radar, specified as a nonnegative scalar. Range rate bias is
expressed as a fraction of the range rate resolution specified in RangeRateResolution.
Units are dimensionless.
Dependencies

To enable this property, set the HasRangeRate property to true.
Data Types: double

HasElevation — Enable radar to measure elevation
false (default) | true

Enable the radar to measure target elevation angles, specified as false or true. Set this
property to true to model a radar sensor that can estimate target elevation. Set this
property to false to model a radar sensor that cannot measure elevation.
Data Types: logical

HasRangeRate — Enable radar to measure range rate
false (default) | true

Enable the radar to measure target range rates, specified as false or true. Set this
property to true to model a radar sensor which can estimate target range rate. Set this
property to false to model a radar sensor that cannot measure range rate.
Data Types: logical

HasNoise — Enable adding noise to radar sensor measurements
true (default) | false

Enable adding noise to radar sensor measurements, specified as true or false. Set this
property to true to add noise to the radar measurements. Otherwise, the measurements
have no noise. Even if you set HasNoise to false, the object still computes the
MeasurementNoise property of each detection.
Data Types: logical

HasFalseAlarms — Enable creating false alarm radar detections
true (default) | false

Enable reporting false alarm radar measurements, specified as true or false. Set this
property to true to report false alarms. Otherwise, only actual detections are reported.
Data Types: logical

4 Objects in Automated Driving System Toolbox

4-438

HasOcclusion — Enable line-of-sight occlusion
true (default) | false

Enable line-of-sight occlusion, specified as true or false. To generate detections only
from objects for which the radar has a direct line of sight, set this property to true. For
example, with this property enabled, the radar does not generate a detection for a vehicle
that is behind another vehicle and blocked from view.
Data Types: logical

MaxNumDetectionsSource — Source of maximum number of detections reported
'Auto' (default) | 'Property'

Source of maximum number of detections reported by the sensor, specified as 'Auto' or
'Property'. When this property is set to 'Auto', the sensor reports all detections.
When this property is set to 'Property', the sensor reports no more than the number of
detections specified by the MaxNumDetections property.
Data Types: char | string

MaxNumDetections — Maximum number of reported detections
50 (default) | positive integer

Maximum number of detections reported by the sensor, specified as a positive integer.
Detections are reported in order of distance to the sensor until the maximum number is
reached.

Dependencies

To enable this property, set the MaxNumDetectionsSource property to 'Property'.
Data Types: double

DetectionCoordinates — Coordinate system of reported detections
'Ego Cartesian' (default) | 'Sensor Cartesian' | 'Sensor Spherical'

Coordinate system of reported detections, specified as one of these values:

• 'Ego Cartesian' — Detections are reported in the ego vehicle Cartesian coordinate
system.

• 'Sensor Cartesian' — Detections are reported in the sensor Cartesian coordinate
system.

 radarDetectionGenerator System object

4-439

• 'Sensor Spherical' — Detections are reported in a spherical coordinate system.
This coordinate system is centered at the radar and aligned with the orientation of the
radar on the ego vehicle.

Data Types: char | string

ActorProfiles — Physical characteristics of actors
structure | array of structures

Physical characteristics of actors, specified as structure or an array of structures. Each
structure defines the physical characteristics, or profile, of an actor. If ActorProfiles is
a single structure, all actors passed into the radarDetectionGenerator object use this
profile. If ActorProfiles is an array, each actor passed into the object must have a
unique actor profile.

You can generate an array of structures for your driving scenario by using the
actorProfiles method that acts on a drivingScenario object. This table shows the
valid fields of the structure. When you do not specify a field, the fields are set to their
default values.

Valid Actor Profile Fields Description
ActorID Scenario-defined actor identifier.
ClassID User-defined classification identifier.
Length Length of cuboid.
Width Width of cuboid.
Height Height of cuboid.
OriginOffset Rotational center of the actor, defined as a

displacement from the bottom-center of the
actor. For vehicles, the offset corresponds
to the point on the ground beneath the
center of the rear axle.

RCSPattern Radar cross-section pattern matrix.
RCSAzimuthAngle Azimuth angles corresponding to rows of

RCSPattern.
RCSElevationAngle Elevation angles corresponding to columns

of RCSPattern.

4 Objects in Automated Driving System Toolbox

4-440

For definitions of the structure fields and their default values, see the Actor and
Vehicle classes.

Usage

Syntax
dets = sensor(actors,time)
[dets,numValidDets] = sensor(actors,time)
[dets,numValidDets,isValidTime] = sensor(actors,time)

Description
dets = sensor(actors,time) creates radar detections, dets, from sensor
measurements taken of actors at the current simulation time. The object can generate
sensor detections for multiple actors simultaneously. Do not include the ego vehicle as
one of the actors.

[dets,numValidDets] = sensor(actors,time) also returns the number of valid
detections reported, numValidDets.

[dets,numValidDets,isValidTime] = sensor(actors,time) also returns a
logical value, isValidTime, indicating that the UpdateInterval time has elapsed.

Input Arguments
actors — Scenario actor poses
structure | structure array

Scenario actor poses, specified as a structure or structure array. Each structure
corresponds to an actor. You can generate this structure using the targetPoses method
of an actor or vehicle. You can also create such a structure manually. The table shows the
required fields of the structure:

 radarDetectionGenerator System object

4-441

Actor Fields Description
ActorID Unique actor identifier, specified as a scalar

positive integer.
Position Actor position vector, specified as real-

valued 1-by-3 vector. Units are in meters.
Velocity Actor velocity vector, specified as real-

valued 1-by-3 vector. If velocity is not
specified, the default value is [0 0 0].
Units are in meters per second.

Speed Speed of actor, specified as a real scalar.
When specified, the actor velocity is aligned
with the x-axis of the actor in the ego actor
coordinate system. You cannot specify both
Speed and Velocity. Units are in meters
per second.

Roll Roll angle of actor, specified as a real-
valued scalar. If roll is not specified, the
default value is 0. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-
valued scalar. If pitch is not specified, the
default value is 0. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-
valued scalar. If yaw is not specified, the
default value is 0. Units are in degrees.

The values of the Position, Velocity, Speed, Roll, Pitch, and Yaw fields are defined
with respect to the ego coordinate system. For definitions of the structure fields, see
Actor and Vehicle.

time — Current simulation time
nonnegative scalar

Current simulation time, specified as a nonnegative scalar. The drivingScenario object
calls the radar detection generator at regular time intervals. The radar detector
generates new detections at intervals defined by the UpdateInterval property. The
value of the UpdateInterval property must be an integer multiple of the simulation
time interval. Updates requested from the sensor between update intervals contain no
detections. Units are in seconds.

4 Objects in Automated Driving System Toolbox

4-442

Example: 10.5
Data Types: double

Output Arguments
dets — Radar sensor detections
cell array of objectDetection objects

Radar sensor detections, returned as a cell array of objectDetection objects. Each
object contains these fields:

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
MeasurementParameters Parameters used by initialization functions

of nonlinear Kalman tracking filters
ObjectAttributes Additional information passed to tracker

For Cartesian coordinates, Measurement, MeasurementNoise, and
MeasurementParameters are reported in the coordinate system specified by the
DetectionCoordinates property of the radarDetectionGenerator.

For spherical coordinates, Measurement and MeasurementNoise are reported in the
spherical coordinate system based on the sensor Cartesian coordinate system.
MeasurementParameters are reported in sensor Cartesian coordinates.

 radarDetectionGenerator System object

4-443

Measurement

DetectionCoordinates Property Measurement and Measurement Noise
Coordinates

'Ego Cartesian' Coordinate Dependence on
HasRangeRate
HasRangeRate Coordinates
true [x;y;z;vx;vy;vz]
false [x;y;z]

'Sensor Cartesian'

'Sensor Spherical' Coordinate Dependence on
HasRangeRate and HasElevation

HasRangeR
ate

HasElevatio
n

Coordinates

true true [az;el;rng
;rr]

true false [az;rng;rr
]

false true [az;el;rng
]

false false [az;rng]

4 Objects in Automated Driving System Toolbox

4-444

MeasurementParameters

Parameter Definition
Frame Enumerated type indicating the frame used

to report measurements. When Frame is set
to 'rectangular', detections are
reported in Cartesian coordinates. When
Frame is set 'spherical', detections are
reported in spherical coordinates.

OriginPosition 3-D vector offset of the sensor origin from
the ego vehicle origin. The vector is derived
from the SensorLocation and Height
properties specified in the
radarDetectionGenerator.

Orientation Orientation of the vision sensor coordinate
system with respect to the ego vehicle
coordinate system. The orientation is
derived from the Yaw, Pitch, and Roll
properties of the
radarDetectionGenerator.

HasVelocity Indicates whether measurements contain
velocity or range rate components.

HasElevation Indicates whether measurements contain
elevation components.

ObjectAttributes

Attribute Definition
TargetIndex Identifier of the actor, ActorID, that

generated the detection. For false alarms,
this value is negative.

SNR Detection signal-to-noise ratio in dB.

numValidDets — Number of detections
nonnegative integer

Number of detections, returned as a nonnegative integer.

 radarDetectionGenerator System object

4-445

• When the MaxNumDetectionsSource property is set to 'Auto', numValidDets is
set to the length of dets.

• When the MaxNumDetectionsSource property is set to 'Property', dets is a cell
array with length determined by the MaxNumDetections property. No more than
MaxNumDetections number of detections are returned. If the number of detections is
fewer than MaxNumDetections, the first numValidDets elements of dets hold valid
detections. The remaining elements of dets are set to the default value.

Data Types: double

isValidTime — Valid detection time
0 | 1

Valid detection time, returned as 0 or 1. isValidTime is 0 when detection updates are
requested at times that are between update intervals specified by UpdateInterval.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to radarDetectionGenerator
isLocked Determine if System object is in use

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

4 Objects in Automated Driving System Toolbox

4-446

Generate Radar Detections of Multiple Vehicles

Generate detections using a forward-facing automotive radar mounted on an ego vehicle.
Assume that there are three targets:

• Vehicle 1 is in the center lane, directly in front of the ego vehicle, and driving at the
same speed.

• Vehicle 2 is in the left lane and driving faster than the ego vehicle by 12 kilometers per
hour.

• Vehicle 3 is in the right lane and driving slower than the ego vehicle by 5 kilometers
per hour.

All positions, velocities, and measurements are relative to the ego vehicle. Run the
simulation for ten steps.

dt = 0.1;
pos1 = [150 0 0];
pos2 = [160 10 0];
pos3 = [130 -10 0];
vel1 = [0 0 0];
vel2 = [12*1000/3600 0 0];
vel3 = [-5*1000/3600 0 0];
car1 = struct('ActorID',1,'Position',pos1,'Velocity',vel1);
car2 = struct('ActorID',2,'Position',pos2,'Velocity',vel2);
car3 = struct('ActorID',3,'Position',pos3,'Velocity',vel3);

Create an automotive radar sensor that is offset from the ego vehicle. By default, the
sensor location is at (3.4,0) meters from the vehicle center and 0.2 meters above the
ground plane. Turn off the range rate computation so that the radar sensor measures
position only.

radar = radarDetectionGenerator('DetectionCoordinates','Sensor Cartesian', ...
 'MaxRange',200,'RangeResolution',10,'AzimuthResolution',10, ...
 'FieldOfView',[40 15],'UpdateInterval',dt,'HasRangeRate',false);
tracker = multiObjectTracker('FilterInitializationFcn',@initcvkf, ...
 'ConfirmationParameters',[3 4],'NumCoastingUpdates',6);

Generate detections with the radar from the non-ego vehicles. The output detections form
a cell array and can be passed directly in to the multiObjectTracker.

simTime = 0;
nsteps = 10;
for k = 1:nsteps

 radarDetectionGenerator System object

4-447

 dets = radar([car1 car2 car3],simTime);
 [confirmedTracks,tentativeTracks,allTracks] = updateTracks(tracker,dets,simTime);

Move the cars one time step and update the multi-object tracker.

 simTime = simTime + dt;
 car1.Position = car1.Position + dt*car1.Velocity;
 car2.Position = car2.Position + dt*car2.Velocity;
 car3.Position = car3.Position + dt*car3.Velocity;
end

Use birdsEyePlot to create an overhead view of the detections. Plot the sensor
coverage area. Extract the X and Y positions of the targets by converting the
Measurement fields of the cell array into a MATLAB array. Display the detections on the
bird's-eye plot.

BEplot = birdsEyePlot('XLim',[0 220],'YLim',[-75 75]);
caPlotter = coverageAreaPlotter(BEplot,'DisplayName','Radar coverage area');
plotCoverageArea(caPlotter,radar.SensorLocation,radar.MaxRange, ...
 radar.Yaw,radar.FieldOfView(1))
detPlotter = detectionPlotter(BEplot,'DisplayName','Radar detections');
detPos = cellfun(@(d)d.Measurement(1:2),dets,'UniformOutput',false);
detPos = cell2mat(detPos')';
if ~isempty(detPos)
 plotDetection(detPlotter,detPos)
end

4 Objects in Automated Driving System Toolbox

4-448

Generate Radar Detections of Occluded Targets

Model the effects of occlusion when generating radar detections from a
radarDetectionGenerator System object™.

Create two cars. Position the first car 40 meters away from the sensor. Position the
second car 10 meters directly behind the first car.

car1 = struct('ActorID',1,'Position',[40 0 0]);
car2 = struct('ActorID',2,'Position',[50 0 0]);

 radarDetectionGenerator System object

4-449

Create a radar detection generator System object, radarSensor, with default values.
Use the System object to generate detections.

radarSensor = radarDetectionGenerator;
simTime = 0; % start of simulation
[dets,numValidDets] = radarSensor([car1 car2],simTime);

Display the coverage area of the radar detection generator on a bird's-eye plot.

bep = birdsEyePlot('XLim',[0 60],'YLim',[-15 15]);
caPlotter = coverageAreaPlotter(bep,'DisplayName', ...
 'Radar coverage area');
plotCoverageArea(caPlotter,radarSensor.SensorLocation, ...
 radarSensor.MaxRange,radarSensor.Yaw, ...
 radarSensor.FieldOfView(1));

4 Objects in Automated Driving System Toolbox

4-450

Extract the (X,Y) positions of the targets by converting the (X,Y) values of the
Measurement field of the cell array into a MATLAB array. Then, display the detections.

if numValidDets > 0
 detPlotter = detectionPlotter(bep,'DisplayName','Radar detections');
 detPos = cellfun(@(d)d.Measurement(1:2),dets,'UniformOutput',false);
 detPos = cell2mat(detPos')';
 plotDetection(detPlotter,detPos)
end

 radarDetectionGenerator System object

4-451

By default, the radar detection generator excludes targets that are occluded by other
objects. Therefore, the radar detects the nearest target but not the target directly behind
it. To include the occluded target in the detections, release the radar detection generator,
disable line-of-sight occlusion, and generate detections again. Display the detections.

release(radarSensor)
radarSensor.HasOcclusion = false;
[detsNoOcclusion,numValidDets] = radarSensor([car1 car2],simTime);
if numValidDets > 0
 detPos = cellfun(@(d)d.Measurement(1:2),detsNoOcclusion,'UniformOutput',false);
 detPos = cell2mat(detPos')';
 plotDetection(detPlotter, detPos)
end

4 Objects in Automated Driving System Toolbox

4-452

Release the radar detection generator.

release(radarSensor)

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 radarDetectionGenerator System object

4-453

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
drivingScenario | objectDetection

System Objects
multiObjectTracker | visionDetectionGenerator

Topics
“Model Radar Sensor Detections”
“Coordinate Systems in Automated Driving System Toolbox”

Introduced in R2017a

4 Objects in Automated Driving System Toolbox

4-454

visionDetectionGenerator System object
Generate vision detections for driving scenario

Description
The visionDetectionGenerator System object generates detections from a monocular
camera sensor mounted on an ego vehicle. All detections are referenced to the coordinate
system of the ego vehicle or the vehicle-mounted sensor. You can use the
visionDetectionGenerator object in a scenario containing actors and trajectories,
which you can create by using a drivingScenario object. Using a statistical mode, the
generator can simulate real detections with added random noise and also generate false
alarm detections. In addition, you can use the visionDetectionGenerator object to
create input to a multiObjectTracker.

To generate visual detections:

1 Create the visionDetectionGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
sensor = visionDetectionGenerator
sensor = visionDetectionGenerator(cameraConfig)
sensor = visionDetectionGenerator(Name,Value)

Description
sensor = visionDetectionGenerator creates a vision detection generator object
with default property values.

 visionDetectionGenerator System object

4-455

sensor = visionDetectionGenerator(cameraConfig) creates a vision detection
generator object using the monoCamera configuration object, cameraConfig.

sensor = visionDetectionGenerator(Name,Value) sets properties using one or
more name-value pairs. For example,
visionDetectionGenerator('DetectionCoordinates','Sensor
Cartesian','MaxRange',200) creates a vision detection generator that reports
detections in the sensor Cartesian coordinate system and has a maximum detection range
of 200 meters. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

DetectorOutput — Types of detections generated by sensor
'Objects only' (default) | 'Lanes only' | 'Lanes with occlusion' | 'Lanes
and objects'

Types of detections generated by the sensor, specified as 'Objects only', 'Lanes
only', 'Lanes with occlusion', or 'Lanes and objects'.

• When set to 'Objects only', only actors are detected.
• When set to 'Lanes only', only lanes are detected.
• When set to 'Lanes with occlusion', only lanes are detected but actors in the

camera field of view can impair the sensor ability to detect lanes.
• When set to 'Lanes and objects', the sensor generates both object detections and

occluded lane detections.

Example: 'Lanes with occlusion'
Data Types: char | string

4 Objects in Automated Driving System Toolbox

4-456

SensorIndex — Unique sensor identifier
positive integer

Unique sensor identifier, specified as a positive integer. This property distinguishes
detections that come from different sensors in a multi-sensor system.
Example: 5
Data Types: double

UpdateInterval — Required time interval between sensor updates
0.1 | positive scalar

Required time interval between sensor updates, specified as a positive scalar. The
drivingScenario object calls the vision detection generator at regular time intervals.
The vision detector generates new detections at intervals defined by the
UpdateInterval property. The value of the UpdateInterval property must be an
integer multiple of the simulation time interval. Updates requested from the sensor
between update intervals contain no detections. Units are in seconds.
Example: 5
Data Types: double

SensorLocation — Sensor location
[3.4 0] | [x y] vector

Location of the vision sensor center, specified as an [x y]. The SensorLocation and
Height properties define the coordinates of the vision sensor with respect to the ego
vehicle coordinate system. The default value corresponds to a forward-facing sensor
mounted on a vehicle dashboard. Units are in meters.
Example: [4 0.1]
Data Types: double

Height — Sensor height above ground plane
1.1 | positive scalar

Sensor height above the vehicle ground plane, specified as a positive scalar. The default
value corresponds to a forward-facing vision sensor mounted on the dashboard of a
sedan. Units are in meters.
Example: 1.5
Data Types: double

 visionDetectionGenerator System object

4-457

Yaw — Yaw angle of vision sensor
0 | scalar

Yaw angle of vision sensor, specified as a scalar. The yaw angle is the angle between the
center line of the ego vehicle and the down-range axis of the vision sensor. A positive yaw
angle corresponds to a clockwise rotation when looking in the positive direction of the z-
axis of the ego vehicle coordinate system. Units are in degrees.
Example: -4
Data Types: double

Pitch — Pitch angle of vision sensor
0 | scalar

Pitch angle of vision sensor, specified as a scalar. The pitch angle is the angle between the
down-range axis of the vision sensor and the x-y plane of the ego vehicle coordinate
system. A positive pitch angle corresponds to a clockwise rotation when looking in the
positive direction of the y-axis of the ego vehicle coordinate system. Units are in degrees.
Example: 3
Data Types: double

Roll — Roll angle of vision sensor
0 | scalar

Roll angle of the vision sensor, specified as a scalar. The roll angle is the angle of rotation
of the down-range axis of the vision sensor around the x-axis of the ego vehicle coordinate
system. A positive roll angle corresponds to a clockwise rotation when looking in the
positive direction of the x-axis of the coordinate system. Units are in degrees.
Example: -4
Data Types: double

Intrinsics — Intrinsic calibration parameters of vision sensor
cameraIntrinsics([800 800],[320 240],[480 640]) (default) |
cameraIntrinsics object

Intrinsic calibration parameters of vision sensor, specified as a cameraIntrinsics
object.

FieldOfView — Angular field of view of vision sensor
real-valued 1-by-2 vector of positive values

4 Objects in Automated Driving System Toolbox

4-458

This property is read-only.

Angular field of view of vision sensor, specified as a real-valued 1-by-2 vector of positive
values, [azfov,elfov]. The field of view defines the azimuth and elevation extents of
the sensor image. Each component must lie in the interval from 0 degrees to 180 degrees.
The field of view is derived from the intrinsic parameters of the vision sensor. Targets
outside of the angular field of view of the sensor are not detected. Units are in degrees.
Data Types: double

MaxRange — Maximum detection range
150 | positive scalar

Maximum detection range, specified as a positive scalar. The sensor cannot detect a
target beyond this range. Units are in meters.
Example: 200
Data Types: double

MaxSpeed — Maximum detectable object speed
50 (default) | non-negative scalar

Maximum detectable object speed, specified as a non-negative scalar. Units are in meters
per second.
Example: 10.0
Data Types: double

MaxAllowedOcclusion — Maximum allowed occlusion of an object
0.5 (default) | scalar in the range (0 1]

Maximum allowed occlusion of an object, specified as a scalar in the range [0 1].
Occlusion is the fraction of the total surface area of an object not visible to the sensor. A
value of one indicates that the object is fully occluded. Units are dimensionless.
Example: 0.2
Data Types: double

DetectionProbability — Probability of detection
0.9 (default) | positive scalar less than or equal to 1

Probability of detecting a target, specified as a positive scalar less than or equal to 1. This
quantity defines the probability that the sensor detects a detectable object. A detectable

 visionDetectionGenerator System object

4-459

object is an object that satisfies the minimum detectable size, maximum range, maximum
speed, and maximum allowed occlusion constraints.
Example: 0.95
Data Types: double

FalsePositivesPerImage — Number of false detections per image
0.1 (default) | nonnegative scalar

Number of false detections that the vision sensor generates for each image, specified as a
nonnegative scalar.
Example: 2
Data Types: double

MinObjectImageSize — Minimum image size of detectable object
[15 15] (default) | 1-by-2 vector of positive values

Minimum height and width of an object that the vision sensor detects within an image,
specified as a [minHeight,minWidth] vector of positive values. The 2-D projected
height of an object must be greater than or equal to minHeight. The projected width of
an object must be greater than or equal to minWidth. Units are in pixels.
Example: [30 20]
Data Types: double

BoundingBoxAccuracy — Bounding box accuracy
5 (default) | positive scalar

Bounding box accuracy, specified as a positive scalar. This quantity defines the accuracy
with which the detector can match a bounding box to a target. Units are in pixels.
Example: 4
Data Types: double

ProcessNoiseIntensity — Noise intensity used for filtering position and
velocity measurements
5 (default) | positive scalar

Noise intensity used for filtering position and velocity measurements, specified as a
positive scalar. Noise intensity defines the standard deviation of the process noise of the
internal constant-velocity Kalman filter used in a vision sensor. The filter models the

4 Objects in Automated Driving System Toolbox

4-460

process noise using a piecewise-constant white noise acceleration model. Noise intensity
is typically of the order of the maximum acceleration magnitude expected for a target.
Units are in m/s2.
Example: 2.5
Data Types: double

HasNoise — Enable adding noise to vision sensor measurements
true (default) | false

Enable adding noise to vision sensor measurements, specified as true or false. Set this
property to true to add noise to the sensor measurements. Otherwise, the measurements
have no noise. Even if you set HasNoise to false, the object still computes the
MeasurementNoise property of each detection.
Data Types: logical

MaxNumDetectionsSource — Source of maximum number of detections reported
'Auto' (default) | 'Property'

Source of maximum number of detections reported by the sensor, specified as 'Auto' or
'Property'. When this property is set to 'Auto', the sensor reports all detections.
When this property is set to 'Property', the sensor reports no more than the number of
detections specified by the MaxNumDetections property.
Data Types: char | string

MaxNumDetections — Maximum number of reported detections
50 (default) | positive integer

Maximum number of detections reported by the sensor, specified as a positive integer.
The detections closest to the sensor are reported.

Dependencies

To enable this property, set the MaxNumDetectionsSource property to 'Property'.
Data Types: double

DetectionCoordinates — Coordinate system of reported detections
'Ego Cartesian' (default) | 'Sensor Cartesian'

Coordinate system of reported detections, specified as one of these values:

 visionDetectionGenerator System object

4-461

• 'Ego Cartesian' — Detections are reported in the ego vehicle Cartesian coordinate
system.

• 'Sensor Cartesian' — Detections are reported in the sensor Cartesian coordinate
system.

Data Types: char | string

LaneUpdateInterval — Required time interval between lane detection updates
0.1 (default) | positive scalar

Required time interval between lane detection updates, specified as a positive scalar. The
drivingScenario object calls the vision detection generator at regular time intervals.
The vision detector generates new lane detections at intervals defined by this property
which must be an integer multiple of the simulation time interval. Updates requested
from the sensor between update intervals contain no lane detections. Units are in
seconds.
Example: 0.4
Data Types: double

MinLaneImageSize — Minimum lane size in image
[20 5] (default) | 1-by-2 real-valued vector

Minimum size of a projected lane marking that can be detected by the sensor after
accounting for curvature, specified as a 1-by-2 real-valued vector, [minHeight
minWidth]. Lane markings must exceed both of these values to be detected. This
property is used only when detecting lanes. Units are in pixels.
Example: [5,7]
Data Types: double

LaneBoundaryAccuracy — Accuracy of lane boundaries
3 | positive scalar

Accuracy of lane boundaries, specified as a positive scalar. This property defines the
accuracy with which the lane sensor can place a lane boundary. Units are in pixels. This
property is used only when detecting lanes.

MaxNumLanesSource — Source of maximum number of reported lanes
'Property' (default) | 'Auto'

4 Objects in Automated Driving System Toolbox

4-462

Source of maximum number of reported lanes, specified as 'Auto' or 'Property'.
When specified as 'Auto', the maximum number of lanes is computed automatically.
When specified as 'Property', use the MaxNumLanes property to set the maximum
number or lanes.
Data Types: char | string

MaxNumLanes — Maximum number of reported lanes
30 (default) | positive integer

Maximum number of reported lanes, specified as a positive integer.

Dependencies

To enable this property, set the MaxNumLanesSource property to 'Property'.
Data Types: char | string

ActorProfiles — Physical characteristics of actors
structure | structure array

Physical characteristics of actors, specified as structure or an array of structures. Each
structure defines the physical characteristics, or profile, of an actor. If ActorProfiles is
a single structure, all actors passed into the visionDetectionGenerator object use
this profile. If ActorProfiles is an array, each actor passed into the object must have a
unique actor profile.

You can generate an array of structures for your driving scenario by using the
actorProfiles method that acts on a drivingScenario object. This table shows the
valid fields of the structure. When you do not specify a field, the fields are set to their
default values.

Valid Actor Profile Fields Description
ActorID Scenario-defined actor identifier.
ClassID User-defined classification identifier.
Length Length of cuboid.
Width Width of cuboid.
Height Height of cuboid.

 visionDetectionGenerator System object

4-463

Valid Actor Profile Fields Description
OriginOffset Rotational center of the actor, defined as a

displacement from the bottom-center of the
actor. For vehicles, the offset corresponds
to the point on the ground beneath the
center of the rear axle.

RCSPattern Radar cross-section pattern matrix.
RCSAzimuthAngle Azimuth angles corresponding to rows of

RCSPattern.
RCSElevationAngle Elevation angles corresponding to columns

of RCSPattern.

For definitions of the structure fields and their default values, see the Actor and
Vehicle classes.

Usage

Syntax
dets = sensor(actorposes,time)
lanedets = sensor(laneboundaries,time)
lanedets = sensor(actorposes,laneboundaries,time)
[___ ,numValidDets] = sensor(___)
[___ ,numValidDetsisValidTime] = sensor(___)
[dets,numValidDets,isValidTime,lanedets,numValidLaneDets,
isValidLaneTime] = sensor(actorposes,laneboundaries,time)

Description
dets = sensor(actorposes,time) creates visual detections, dets, from sensor
measurements taken of actors at the current simulation time. The object can generate
sensor detections for multiple actors simultaneously. Do not include the ego vehicle as
one of the actors.

To enable this syntax, set DetectionOutput to 'Objects only'.

4 Objects in Automated Driving System Toolbox

4-464

lanedets = sensor(laneboundaries,time) generates lane detections, lanedets,
from lane boundary structures, laneboundaries.

To enable this syntax set DetectionOutput to 'Lanes only'. The lane detector
generates lane boundaries at intervals specified by the LaneUpdateInterval property.

lanedets = sensor(actorposes,laneboundaries,time) generates lane
detections, lanedets, from lane boundary structures, laneboundaries.

To enable this syntax, set DetectionOutput to 'Lanes with occlusion'. The lane
detector generates lane boundaries at intervals specified by the LaneUpdateInterval
property.

[___ ,numValidDets] = sensor(___) also returns the number of valid detections
reported, numValidDets.

[___ ,numValidDetsisValidTime] = sensor(___) also returns a logical value,
isValidTime, indicating that the UpdateInterval time to generate detections has
elapsed.

[dets,numValidDets,isValidTime,lanedets,numValidLaneDets,
isValidLaneTime] = sensor(actorposes,laneboundaries,time) returns both
object detections, dets, and lane detections lanedets. This syntax also returns the
number of valid lane detections reported, numValidLaneDets, and a flag,
isValidLaneTime, indicating whether the required simulation time to generate lane
detections has elapsed.

To enable this syntax, set DetectionOutput to 'Lanes and objects'.

Input Arguments
actorposes — Scenario actor poses
structure | structure array

Scenario actor poses, specified as a structure or structure array. Each structure
corresponds to an actor. You can generate this structure using the targetPoses method
of an actor or vehicle. You can also create such a structure manually. The table shows the
required fields of the structure:

 visionDetectionGenerator System object

4-465

Field Description
ActorID Unique actor identifier, specified as a scalar

positive integer.
Position Actor position vector, specified as real-

valued 1-by-3 vector. Units are in meters.
Velocity Actor velocity vector, specified as real-

valued 1-by-3 vector. If velocity is not
specified, the default value is [0 0 0].
Units are in meters per second.

Speed Speed of actor, specified as a real scalar.
When specified, the actor velocity is aligned
with the x-axis of the actor in the ego actor
coordinate system. You cannot specify both
Speed and Velocity. Units are in meters
per second.

Roll Roll angle of actor, specified as a real-
valued scalar. If roll is not specified, the
default value is 0. Units are in degrees.

Pitch Pitch angle of actor, specified as a real-
valued scalar. If pitch is not specified, the
default value is 0. Units are in degrees.

Yaw Yaw angle of actor, specified as a real-
valued scalar. If yaw is not specified, the
default value is 0. Units are in degrees.

The values of the Position, Velocity, Speed, Roll, Pitch, and Yaw fields are defined
with respect to the ego coordinate system. For definitions of the structure fields, see
Actor and Vehicle.

Dependencies

To enable this argument, set the DetectorOutput property to 'Objects only',
'Lanes with occlusion', or 'Lanes and objects'.

laneboundaries — Lane boundaries
array of lane boundary structures

Lane boundaries, specified as an array of lane boundary structures defined in the table:

4 Objects in Automated Driving System Toolbox

4-466

Lane Boundary Structure Fields

Field Description
Coordinates Lane boundary coordinates, specified as a

real-valued N-by-3 matrix. Lane boundary
coordinates define the position of points on
the boundary at distances specified by
XDistance. In addition, a set of boundary
coordinates are inserted into the matrix at
zero distance. Units are in meters.

Curvature Lane boundary curvature at each row of the
Coordinates matrix, specified as a real-
valued N-by-1 vector. N is the number of
rows in the Coordinates matrix. Units are
in degrees/m.

CurvatureDerivative Derivative of lane boundary curvature at
each row of the Coordinates matrix,
specified as a real-valued N-by-1 vector. N
is the number of rows in the Coordinates
matrix. Units are in degrees/m. Units are in
degrees/m2.

HeadingAngle Initial lane boundary heading, specified as a
scalar. The heading angle of the lane
boundary is relative to the ego car heading.
Units are in degrees.

LateralOffset Distance of the lane boundary from the ego
vehicle position, specified as a scalar. An
offset to a lane boundary to the left of the
ego is positive. An offset to the right of the
ego vehicle is negative. Units are in meters.

 visionDetectionGenerator System object

4-467

BoundaryType Type of lane boundary marking, specified as
one of the following:

• 'Unmarked' — No physical lane marker
exists

• 'Solid' — Single unbroken line
• 'Dashed' — Single line of dashed lane

markers
• 'DoubleSolid' — two unbroken lines
• 'DoubleDashed' — Two dashed lines
• 'SolidDashed' — Solid line on the left

and a dashed line on the right
• 'DashedSolid' — Dashed line on the

left and a solid line on the right
Strength Strength of the lane boundary marking,

specified as a scalar from 0 through 1. A
value of 0 corresponds to a marking that is
not visible and a value of 1 corresponds to a
marking that is completely visible. Values in
between are partially visible.

Width Lane boundary width, specified as a
positive scalar. In a double-line lane marker,
the same width is used for both lines and
the space between lines. Units are in
meters.

Length Length of dash in dashed lines, specified as
a positive scalar. In a double-line lane
marker, the same length is used for both
lines.

Space Length of space between dashes in dashed
lines, specified as a positive scalar. In a
dashed double-line lane marker the same
space is used for both lines

4 Objects in Automated Driving System Toolbox

4-468

Dependencies

To enable this argument, set the DetectorOutput property to 'Lanes only', 'Lanes
with occlusion', or 'Lanes and objects'.
Data Types: struct

time — Current simulation time
positive scalar

Current simulation time, specified as a positive scalar. The drivingScenario object
calls the vision detection generator at regular time intervals. The vision detector
generates new detections at intervals defined by the UpdateInterval property. The
values of the UpdateInterval and LanesUpdateInterval properties must be an
integer multiple of the simulation time interval. Updates requested from the sensor
between update intervals contain no detections. Units are in seconds.
Example: 10.5
Data Types: double

Output Arguments
dets — Object detections
cell array of objectDetection objects

Object detections, returned as a cell array of objectDetection objects. Each object
contains these fields:

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
MeasurementParameters Parameters used by initialization functions

of nonlinear Kalman tracking filters
ObjectAttributes Additional information passed to tracker

 visionDetectionGenerator System object

4-469

Measurement, MeasurementNoise, and MeasurementParameters are reported in the
coordinate system specified by the DetectionCoordinates property of the
visionDetectionGenerator.

Measurement

DetectionCoordinates Property Measurement and Measurement Noise
Coordinates

'Ego Cartesian' [x;y;z;vx;vy;vz]
'Sensor Cartesian'

MeasurementParameters

Parameter Definition
Frame Enumerated type indicating the frame used

to report measurements. When Frame is set
to 'rectangular', detections are
reported in Cartesian coordinates. When
Frame is set 'spherical', detections are
reported in spherical coordinates.

OriginPosition 3-D vector offset of the sensor origin from
the ego vehicle origin. The vector is derived
from the SensorLocation and Height
properties specified in the
visionDetectionGenerator.

Orientation Orientation of the vision sensor coordinate
system with respect to the ego vehicle
coordinate system. The orientation is
derived from the Yaw, Pitch, and Roll
properties of the
visionDetectionGenerator.

HasVelocity Indicates whether measurements contain
velocity or range rate components.

4 Objects in Automated Driving System Toolbox

4-470

ObjectAttributes

Attribute Definition
TargetIndex Identifier of the actor, ActorID, that

generated the detection. For false alarms,
this value is negative.

numValidDets — Number of detections
nonnegative integer

Number of detections returned, defined as a nonnegative integer.

• When the MaxNumDetectionsSource property is set to 'Auto', numValidDets is
set to the length of dets.

• When the MaxNumDetectionsSource is set to 'Property', dets is a cell array with
length determined by the MaxNumDetections property. No more than
MaxNumDetections number of detections are returned. If the number of detections is
fewer than MaxNumDetections, the first numValidDets elements of dets hold valid
detections. The remaining elements of dets are set to the default value.

.
Data Types: double

isValidTime — Valid detection time
0 | 1

Valid detection time, returned as 0 or 1. isValidTime is 0 when detection updates are
requested at times that are between update intervals specified by UpdateInterval.
Data Types: logical

lanedets — Lane boundary detections
lane boundary detection structure

Lane boundary detections, returned as an array structures. The fields of the structure
are:

 visionDetectionGenerator System object

4-471

Lane Boundary Detection Structure

Field Description
Time Lane detection time
SensorIndex Unique identifier of sensor
LaneBoundaries Array of clothoidLaneBoundary objects.

numValidLaneDets — Number of detections
nonnegative integer

Number of lane detections returned, defined as a nonnegative integer.

• When the MaxNumLanesSource property is set to 'Auto', numValidLaneDets is set
to the length of lanedets.

• When the MaxNumLanesSource is set to 'Property', lanedets is a cell array with
length determined by the MaxNumLanes property. No more than MaxNumLanes
number of lane detections are returned. If the number of detections is fewer than
MaxNumLanes, the first numValidLaneDetections elements of lanedets hold valid
lane detections. The remaining elements of lanedets are set to the default value.

.
Data Types: double

isValidLaneTime — Valid lane detection time
0 | 1

Valid lane detection time, returned as 0 or 1. isValidLaneTime is 0 when lane detection
updates are requested at times that are between update intervals specified by
LaneUpdateInterval.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

4 Objects in Automated Driving System Toolbox

4-472

Specific to visionDetectionGenerator
isLocked Determine if System object is in use

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Examples

Generate Visual Detections of Multiple Vehicles

Generate detections using a forward-facing automotive vision sensor mounted on an ego
vehicle. Assume that there are two target vehicles:

• Vehicle 1 is directly in front of the ego vehicle and moving at the same speed.
• Vehicle 2 vehicle is driving faster than the ego vehicle by 12 kph in the left lane.

All positions, velocities, and measurements are relative to the ego vehicle. Run the
simulation for ten steps.

dt = 0.1;
car1 = struct('ActorID',1,'Position',[100 0 0],'Velocity', [5*1000/3600 0 0]);
car2 = struct('ActorID',2,'Position',[150 10 0],'Velocity',[12*1000/3600 0 0]);

Create an automotive vision sensor having a location offset from the ego vehicle. By
default, the sensor location is at (3.4,0) meters from the vehicle center and 1.1 meters
above the ground plane..

sensor = visionDetectionGenerator('DetectionProbability',1, ...
 'MinObjectImageSize',[5 5],'MaxRange',200,'DetectionCoordinates','Sensor Cartesian');
tracker = multiObjectTracker('FilterInitializationFcn',@initcvkf, ...
 'ConfirmationParameters',[3 4],'NumCoastingUpdates',6);

Generate visual detections for the non-ego actors as they move. The output detections
form a cell array. Extract only position information from the detections to pass to the
multiObjectTracker, which expects only position information. The Update the tracker
for each new set of detections.

 visionDetectionGenerator System object

4-473

simTime = 0;
nsteps = 10;
for k = 1:nsteps
 dets = sensor([car1 car2],simTime);
 n = size(dets,1);
 for k = 1:n
 meas = dets{k}.Measurement(1:3);
 dets{k}.Measurement = meas;
 measmtx = dets{k}.MeasurementNoise(1:3,1:3);
 dets{k}.MeasurementNoise = measmtx;
 end
 [confirmedTracks,tentativeTracks,allTracks] = updateTracks(tracker,dets,simTime);
 simTime = simTime + dt;
 car1.Position = car1.Position + dt*car1.Velocity;
 car2.Position = car2.Position + dt*car2.Velocity;
end

Use birdsEyePlot to create an overhead view of the detections. Plot the sensor
coverage area. Extract the x and y positions of the targets by converting the
Measurement fields of the cell into a MATLAB® array. Then, plot the detections using
birdsEyePlot methods.

BEplot = birdsEyePlot('XLim',[0 220],'YLim',[-75 75]);
caPlotter = coverageAreaPlotter(BEplot,'DisplayName','Vision Coverage Area');
plotCoverageArea(caPlotter,sensor.SensorLocation,sensor.MaxRange, ...
 sensor.Yaw,sensor.FieldOfView(1))
detPlotter = detectionPlotter(BEplot,'DisplayName','Vision Detections');
detPos = cellfun(@(d)d.Measurement(1:2),dets,'UniformOutput',false);
detPos = cell2mat(detPos')';
if ~isempty(detPos)
 plotDetection(detPlotter,detPos)
end

4 Objects in Automated Driving System Toolbox

4-474

Generate Visual Detections from Monocular Camera

Create a vision sensor by using a monocular camera configuration, and generate
detections from that sensor.

Specify the intrinsic parameters of the camera and create a monoCamera object from
these parameters. The camera is mounted on top of an ego car at a height of 1.5 meters
above the ground and a pitch of 1 degree toward the ground.

focalLength = [800 800];
principalPoint = [320 240];

 visionDetectionGenerator System object

4-475

imageSize = [480 640];
intrinsics = cameraIntrinsics(focalLength,principalPoint,imageSize);

height = 1.5;
pitch = 1;
monoCamConfig = monoCamera(intrinsics,height,'Pitch',pitch);

Create a vision detection generator using the monocular camera configuration.

visionSensor = visionDetectionGenerator(monoCamConfig);

Generate a driving scenario with an ego car and two target cars. Position the first target
car 30 meters directly in front of the ego car. Position the second target car 20 meters in
front of the ego car but offset to the left by 3 meters.

scenario = drivingScenario;
egoCar = vehicle(scenario);
targetCar1 = vehicle(scenario,'Position',[30 0 0]);
targetCar2 = vehicle(scenario,'Position',[20 3 0]);

Use a bird's-eye plot to display the vehicle outlines and sensor coverage area.

figure
bep = birdsEyePlot('XLim',[0 50],'YLim',[-20 20]);

olPlotter = outlinePlotter(bep);
[position,yaw,length,width,originOffset,color] = targetOutlines(egoCar);
plotOutline(olPlotter,position,yaw,length,width);

caPlotter = coverageAreaPlotter(bep,'DisplayName','Coverage area','FaceColor','blue');
plotCoverageArea(caPlotter,visionSensor.SensorLocation,visionSensor.MaxRange, ...
 visionSensor.Yaw,visionSensor.FieldOfView(1))

4 Objects in Automated Driving System Toolbox

4-476

Obtain the poses of the target cars from the perspective of the ego car. Use these poses to
generate detections from the sensor.

poses = targetPoses(egoCar);
[dets,numValidDets] = visionSensor(poses,scenario.SimulationTime);

Display the (X,Y) positions of the valid detections. For each detection, the (X,Y) positions
are the first two values of the Measurement field.

for i = 1:numValidDets
 XY = dets{i}.Measurement(1:2);
 detXY = sprintf('Detection %d: X = %.2f meters, Y = %.2f meters',i,XY);
 disp(detXY)
end

 visionDetectionGenerator System object

4-477

Detection 1: X = 19.09 meters, Y = 2.77 meters
Detection 2: X = 27.81 meters, Y = 0.08 meters

Generate Object and Lane Boundary Detections

Create a driving scenario containing an ego car and a target vehicle traveling along a
three-lane road. Detect the lane boundaries using a vision sensor.

sc = drivingScenario;

Create a three-lane road using lane specifications.

roadCenters = [0 0 0; 60 0 0; 120 30 0];
lspc = lanespec(3);
road(sc,roadCenters,'Lanes',lspc);

The ego car follows the center lane at 30 m/s.

egocar = vehicle(sc);
egopath = [1.5 0 0; 60 0 0; 111 25 0];
egospeed = 30;
trajectory(egocar,egopath,egospeed);

The target vehicle travels ahead at 40 m/s and changes lanes close to the ego vehicle.

targetcar = vehicle(sc,'ClassID',2);
targetpath = [8 2; 60 -3.2; 120 33];
targetspeed = 40;
trajectory(targetcar,targetpath,targetspeed);

Display a chase plot showing a 3-D view from behind the ego vehicle.

chasePlot(egocar)

4 Objects in Automated Driving System Toolbox

4-478

Create a vision detection generator that detects lanes and objects. The pitch of the sensor
points one degree downward.

visionSensor = visionDetectionGenerator('Pitch',1.0);
visionSensor.DetectorOutput = 'Lanes and objects';
visionSensor.ActorProfiles = actorProfiles(sc);

Run the simulation.

• Create a bird's eye plot and the associated plotters.
• Plot the sensor coverage area.
• Display lane markings.

 visionDetectionGenerator System object

4-479

• Obtain ground truth poses of targets on the road.
• Obtain ideal lane boundary points up to 60 m ahead.
• Generate detections from the ideal target poses and lane boundaries.
• Plot outline of target.
• Plot object detections when the object detection is valid.
• Plot lane boundary when the lane detection is valid.

bep = birdsEyePlot('XLim', [0 60], 'YLim', [-35 35]);
caPlotter = coverageAreaPlotter(bep, 'DisplayName','Coverage area', ...
 'FaceColor','blue');
detPlotter = detectionPlotter(bep,'DisplayName','Object detections');
lmPlotter = laneMarkingPlotter(bep,'DisplayName','Lane markings');
lbPlotter = laneBoundaryPlotter(bep,'DisplayName', ...
 'Lane boundary detections','Color','red');
olPlotter = outlinePlotter(bep);
plotCoverageArea(caPlotter,visionSensor.SensorLocation,...
 visionSensor.MaxRange,visionSensor.Yaw, ...
 visionSensor.FieldOfView(1));
while advance(sc)
 [lmv,lmf] = laneMarkingVertices(egocar);
 plotLaneMarking(lmPlotter,lmv,lmf)
 tgtpose = targetPoses(egocar);
 lookaheadDistance = 0:0.5:60;
 lb = laneBoundaries(egocar,'XDistance',lookaheadDistance,'LocationType','inner');
 [obdets,nobdets,obValid,lb_dets,nlb_dets,lbValid] = ...
 visionSensor(tgtpose,lb,sc.SimulationTime);
 [objposition,objyaw,objlength,objwidth,objriginOffset,color] = targetOutlines(egocar);
 plotOutline(olPlotter,objposition,objyaw,objlength,objwidth, ...
 'OriginOffset',objriginOffset,'Color', color)
 if obValid
 detPos = cellfun(@(d)d.Measurement(1:2),obdets,'UniformOutput',false);
 detPos = vertcat(zeros(0,2),cell2mat(detPos')');
 plotDetection(detPlotter,detPos)
 end
 if lbValid
 plotLaneBoundary(lbPlotter,vertcat(lb_dets.LaneBoundaries))
 end
end

4 Objects in Automated Driving System Toolbox

4-480

 visionDetectionGenerator System object

4-481

Configure Ideal Vision Sensor

Generate detections from an ideal vision sensor and compare these detections to ones
from a noisy sensor. An ideal sensor is one that always generates detections, with no false
positives and no added random noise.

Create a Driving Scenario

Create a driving scenario in which the ego car is positioned in front of a diagonal array of
target cars. With this configuration, you can later plot the measurement noise covariances
of the detected targets without having the target cars occlude one another.

4 Objects in Automated Driving System Toolbox

4-482

scenario = drivingScenario;
egoCar = vehicle(scenario);

numTgts = 6;
x = linspace(20,50,numTgts)';
y = linspace(-20,0,numTgts)';
x = [x;x(1:end-1)];
y = [y;-y(1:end-1)];
numTgts = numel(x);

for m = 1:numTgts
 vehicle(scenario,'Position',[x(m) y(m) 0]);
end

Plot the driving scenario in a bird's-eye plot.

bep = birdsEyePlot('XLim',[0 60]);
legend('hide')

olPlotter = outlinePlotter(bep);
[position,yaw,length,width,originOffset,color] = targetOutlines(egoCar);
plotOutline(olPlotter,position,yaw,length,width, ...
 'OriginOffset',originOffset,'Color',color)

 visionDetectionGenerator System object

4-483

Create an Ideal Vision Sensor

Create a vision sensor by using the visionDetectionGenerator System object™. To
generate ideal detections, set DetectionProbability to 1,
FalsePositivesPerImage to 0, and HasNoise to false.

• DetectionProbability = 1 — The sensor always generates detections for a
target, as long as the target is not occluded and meets the range, speed, and image
size constraints.

• FalsePositivesPerImage = 0 — The sensor generates detections from only real
targets in the driving scenario.

• HasNoise = false — The sensor does not add random noise to the reported
position and velocity of the target. However, the objectDetection objects returned

4 Objects in Automated Driving System Toolbox

4-484

by the sensor have measurement noise values set to the noise variance that would
have been added if HasNoise were true. With these noise values, you can process
ideal detections using the multiObjectTracker. This technique is useful for
analyzing maneuver lag without needing to run time-consuming Monte Carlo
simulations.

idealSensor = visionDetectionGenerator(...
 'SensorIndex',1, ...
 'UpdateInterval',scenario.SampleTime, ...
 'SensorLocation',[0.75*egoCar.Wheelbase 0], ...
 'Height',1.1, ...
 'Pitch',0, ...
 'Intrinsics',cameraIntrinsics(800,[320 240],[480 640]), ...
 'BoundingBoxAccuracy',50, ... % Make the noise large for illustrative purposes
 'ProcessNoiseIntensity',5, ...
 'MaxRange',60, ...
 'DetectionProbability',1, ...
 'FalsePositivesPerImage',0, ...
 'HasNoise',false, ...
 'ActorProfiles',actorProfiles(scenario))

idealSensor =
 visionDetectionGenerator with properties:

 SensorIndex: 1
 UpdateInterval: 0.0100

 SensorLocation: [2.1000 0]
 Height: 1.1000
 Yaw: 0
 Pitch: 0
 Roll: 0
 Intrinsics: [1x1 cameraIntrinsics]

 DetectorOutput: 'Objects only'
 FieldOfView: [43.6028 33.3985]
 MaxRange: 60
 MaxSpeed: 50
 MaxAllowedOcclusion: 0.5000
 MinObjectImageSize: [15 15]

 DetectionProbability: 1
 FalsePositivesPerImage: 0

 visionDetectionGenerator System object

4-485

 Show all properties

Plot the coverage area of the ideal vision sensor.

legend('show')
caPlotter = coverageAreaPlotter(bep,'DisplayName','Coverage area','FaceColor','blue');
mountPosition = idealSensor.SensorLocation;
range = idealSensor.MaxRange;
orientation = idealSensor.Yaw;
fieldOfView = idealSensor.FieldOfView(1);
plotCoverageArea(caPlotter,mountPosition,range,orientation,fieldOfView);

4 Objects in Automated Driving System Toolbox

4-486

Simulate Ideal Vision Detections

Obtain the positions of the targets. The positions are in ego vehicle coordinates.

gTruth = targetPoses(egoCar);

Generate timestamped vision detections. These detections are returned as a cell array of
objectDetection objects.

time = scenario.SimulationTime;
dets = idealSensor(gTruth,time);

Inspect the measurement and measurement noise variance of the first (leftmost)
detection. Even though the detection is ideal and therefore has no added random noise,
the MeasurementNoise property shows the values as if the detection did have noise.

dets{1}.Measurement

ans = 6×1

 31.0000
 -11.2237
 0
 0
 0
 0

dets{1}.MeasurementNoise

ans = 6×6

 1.5903 -0.2174 0 0 0 0
 -0.2174 0.3744 0 0 0 0
 0 0 100.0000 0 0 0
 0 0 0 0.5808 -0.0405 0
 0 0 0 -0.0405 0.3544 0
 0 0 0 0 0 100.0000

Plot the ideal detections and ellipses for the 2-sigma contour of the measurement noise
covariance.

pos = cell2mat(cellfun(@(d)d.Measurement(1:2)',dets, ...
 'UniformOutput',false));

 visionDetectionGenerator System object

4-487

cov = reshape(cell2mat(cellfun(@(d)d.MeasurementNoise(1:2,1:2),dets, ...
 'UniformOutput',false))',2,2,[]);
plotter = trackPlotter(bep,'DisplayName','Ideal detections', ...
 'MarkerEdgeColor','blue','MarkerFaceColor','blue');
sigma = 2;
plotTrack(plotter,pos,sigma^2*cov)

Simulate Noisy Detections for Comparison

Create a noisy sensor based on the properties of the ideal sensor.

noisySensor = clone(idealSensor);
release(noisySensor)
noisySensor.HasNoise = true;

4 Objects in Automated Driving System Toolbox

4-488

Reset the driving scenario back to its original state.

restart(scenario)

Collect statistics from the noisy detections.

numMonte = 1e3;
pos = [];
for itr = 1:numMonte
 time = scenario.SimulationTime;
 dets = noisySensor(gTruth,time);

 % Save noisy measurements
 pos = [pos;cell2mat(cellfun(@(d)d.Measurement(1:2)',dets,'UniformOutput',false))];

 advance(scenario);
end

Plot the noisy detections.

plotter = detectionPlotter(bep,'DisplayName','Noisy detections', ...
 'Marker','.','MarkerEdgeColor','red','MarkerFaceColor','red');
plotDetection(plotter,pos)

 visionDetectionGenerator System object

4-489

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

4 Objects in Automated Driving System Toolbox

4-490

See Also
Objects
drivingScenario | laneMarking | lanespec | monoCamera | objectDetection

System Objects
multiObjectTracker | radarDetectionGenerator

Functions
laneBoundaries | road

Topics
“Model Vision Sensor Detections”
“Coordinate Systems in Automated Driving System Toolbox”

Introduced in R2017a

 visionDetectionGenerator System object

4-491

outlinePlotter
Create bird's-eye-view outline plotter

Syntax
olPlotter = outlinePlotter(bep)
olPlotter = outlinePlotter(bep,Name,Value)

Description
olPlotter = outlinePlotter(bep) returns an object outline plotter for displaying
outlines in a bird's-eye plot (bep). To plot the outlines in a bird's-eye-plot, use
plotOutline.

From a given driving scenario, use targetOutlines to get the dimensions for all actors
in the scene. Then, after calling outlinePlotter to create a plotter object, use
plotOutline to plot the outlines of all the actors in a bird's-eye plot.

olPlotter = outlinePlotter(bep,Name,Value) specifies additional options using
one or more Name,Value pair arguments.

Examples

Plot Outlines of Targets in Bird's-Eye Plot

Create a driving scenario. Construct a 25 m road segment, add a pedestrian and a
vehicle, and specify their trajectories to follow. The pedestrian crosses the road at 1 m/s.
The vehicle drives along the road at 10 m/s.

s = drivingScenario;

road(s, [0 0 0; 25 0 0]);

p = actor(s,'Length',0.2,'Width',0.4,'Height',1.7);

4 Objects in Automated Driving System Toolbox

4-492

v = vehicle(s);

trajectory(p,[15 -3 0; 15 3 0], 1);
trajectory(v,[v.RearOverhang 0 0; 25-v.Length+v.RearOverhang 0 0], 10);

Add an egocentric plot for the vehicle

chasePlot(v,'Centerline','on')

Create a bird's-eye plot.

bep = birdsEyePlot('XLim',[-25 25],'YLim',[-10 10]);
olPlotter = outlinePlotter(bep);
lbPlotter = laneBoundaryPlotter(bep);
legend('off')

 outlinePlotter

4-493

Start the simulation loop. Update the plotter with outlines for the targets.

while advance(s)
 % get the road boundaries and rectangular outlines
 rb = roadBoundaries(v);
 [position,yaw,length,width,originOffset,color] = targetOutlines(v);

 % update the bird's-eye plotters with the road and actors
 plotLaneBoundary(lbPlotter,rb);
 plotOutline(olPlotter,position,yaw,length,width, ...
 'OriginOffset',originOffset,'Color',color);

 % allow time for plot to update

4 Objects in Automated Driving System Toolbox

4-494

 pause(0.01)
end

 outlinePlotter

4-495

Input Arguments
bep — Unpopulated bird’s-eye plot
birdsEyePlot handle

Unpopulated bird’s-eye plot, specified as a birdsEyePlot handle that you can update
with various plotters.

4 Objects in Automated Driving System Toolbox

4-496

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'FaceAlpha',0.5

FaceAlpha — Transparency within each outline
0.75 (default) | scalar

Transparency within each outline, specified as the comma-separated pair consisting of
'FaceAlpha' and a scalar between 0 and 1. A value of 1 is fully opaque and a value of 0 is
fully transparent.

Tag — Tag to identify plot of coverage area
'PlotterN' (default) | character vector | string scalar

Tag to identify the plot of the coverage area, specified as the comma-separated pair
consisting of 'Tag' and a character vector or string scalar. The default 'Tag' used is
'PlotterN', where N is an integer.

Output Arguments
olPlotter — Outline plotter
plotter object

Outline plotter to use for the bird’s-eye plot, returned as a plotter object.

See Also
Functions
birdsEyePlot | plotOutline

Introduced in R2017b

 outlinePlotter

4-497

vehicleCostmap
Costmap representing planning space around vehicle

Description
The vehicleCostmap object creates a costmap that represents the planning search
space around a vehicle. The costmap holds information about the environment, such as
obstacles or areas that the vehicle cannot traverse. To check for collisions, the costmap
inflates obstacles using the inflation radius specified in the CollisionChecker property.
The costmap is used by path planning algorithms, such as pathPlannerRRT, to find
collision-free paths for the vehicle to follow.

The costmap is stored as a 2-D grid of cells, often called an occupancy grid. Each grid cell
in the costmap has a value in the range [0, 1] representing the cost of navigating through
that grid cell. The state of each grid cell is free, occupied, or unknown, as determined by
the FreeThreshold and OccupiedThreshold properties.

The following figure shows a costmap with sample costs and grid cell states.

4 Objects in Automated Driving System Toolbox

4-498

Creation

Syntax
costmap = vehicleCostmap(C)
costmap = vehicleCostmap(mapWidth,mapLength)
costmap = vehicleCostmap(mapWidth,mapLength,costVal)
costmap = vehicleCostmap(occGrid)
costmap = vehicleCostmap(___ ,'MapLocation',mapLocation)
costmap = vehicleCostmap(___ ,Name,Value)

Description
costmap = vehicleCostmap(C) creates a vehicle costmap using the cost values in
matrix C.

costmap = vehicleCostmap(mapWidth,mapLength) creates a vehicle costmap
representing an area of width mapWidth and length mapLength in world units. By
default, each grid cell is in the unknown state.

costmap = vehicleCostmap(mapWidth,mapLength,costVal) also assigns a default
cost, costVal, to each cell in the grid.

costmap = vehicleCostmap(occGrid) creates a vehicle costmap from the occupancy
grid occGrid. Use of this syntax requires Robotics System Toolbox™.

costmap = vehicleCostmap(___ ,'MapLocation',mapLocation) specifies in
mapLocation the bottom-left corner coordinates of the costmap. Specify
'MapLocation',mapLocation after any of the preceding inputs and in any order
among the Name,Value pair arguments.

costmap = vehicleCostmap(___ ,Name,Value) uses Name,Value pair arguments
to specify the FreeThreshold, OccupiedThreshold, CollisionChecker, and
CellSize properties. For example, vehicleCostmap(C,'CollisionChecker',3)
uses three circles to represent the vehicle shape and check for collisions. After you create
the object, you can update all of these properties except CellSize.

 vehicleCostmap

4-499

Input Arguments
C — Cost values
numeric matrix with values in the range [0, 1]

Cost values, specified as a numeric matrix with values in the range [0, 1].

When creating a vehicleCostmap object, if you do not specify C or a uniform cost value,
costVal, then the default cost value of each grid cell is (FreeThreshold +
OccupiedThreshold)/2.
Data Types: single | double

mapWidth — Width of costmap
positive scalar

Width of costmap, in world units, specified as a positive scalar.

mapLength — Length of costmap
positive scalar

Length of costmap, in world units, specified as a positive scalar.

costVal — Uniform cost value
scalar in the range [0, 1]

Uniform cost value applied to all cells in the costmap, specified as a scalar in the range
[0, 1].

When creating a vehicleCostmap object, if you do not specify costVal or a cost value
matrix, C, then the default cost value of each grid cell is (FreeThreshold +
OccupiedThreshold)/2.

occGrid — Occupancy grid
robotics.OccupancyGrid object | robotics.BinaryOccupancyGrid object

Occupancy grid, specified as a robotics.OccupancyGrid or
robotics.BinaryOccupancyGrid object. Use of this argument requires Robotics
System Toolbox.

mapLocation — Costmap location
[0 0] (default) | two-element numeric vector of form [mapX mapY]

4 Objects in Automated Driving System Toolbox

4-500

Costmap location, specified as a two-element numeric vector of the form [mapX mapY].
This vector specifies the coordinate location of the bottom-left corner of the costmap.
Example: 'MapLocation',[8 8]

Properties
FreeThreshold — Threshold below which grid cell is free
0.2 (default) | scalar in the range [0, 1]

Threshold below which a grid cell is free, specified as a numeric scalar in the range [0, 1].

A grid cell with cost c can have one of these states:

• If c < FreeThreshold, the grid cell state is free.
• If c ≥ FreeThreshold and c ≤ OccupiedThreshold, the grid cell state is unknown.
• If c > OccupiedThreshold, the grid cell state is occupied.

OccupiedThreshold — Threshold above which grid cell is occupied
0.65 (default) | scalar in the range [0, 1]

Threshold above which a grid cell is occupied, specified as a numeric scalar in the range
[0, 1].

A grid cell with cost c can have one of these states:

• If c < FreeThreshold, the grid cell state is free.
• If c ≥ FreeThreshold and c ≤ OccupiedThreshold, the grid cell state is unknown.
• If c > OccupiedThreshold, the grid cell state is occupied.

CollisionChecker — Collision-checking configuration
inflationCollisionChecker() (default) | InflationCollisionChecker object

Collision-checking configuration, specified as an InflationCollisionChecker object.
To create this object, use the inflationCollisionChecker function. Using the
properties of the InflationCollisionChecker object, you can configure:

• The inflation radius used to inflate obstacles in the costmap
• The number of circles used to enclose the vehicle when calculating the inflation radius

 vehicleCostmap

4-501

• The placement of each circle along the longitudinal axis of the vehicle
• The dimensions of the vehicle

By default, CollisionChecker uses the default InflationCollisionChecker object,
which is created using the syntax inflationCollisionChecker(). This collision-
checking configuration encloses the vehicle in one circle.

MapExtent — Extent of costmap
four-element, nonnegative integer vector of form [xmin xmax ymin ymax]

This property is read-only.

Extent of costmap around the vehicle, specified as a four-element, nonnegative integer
vector of the form [xmin xmax ymin ymax].

• xmin and xmax describe the length of the map in world coordinates.
• ymin and ymax describe the width of the map in world coordinates.

CellSize — Side length of each square cell
1 (default) | positive scalar

Side length of each square cell, in world units, specified as a positive scalar. For example,
a side length of 1 implies a grid where each cell is a square of size 1-by-1 meters. Smaller
values improve the resolution of the search space at the cost of increased memory
consumption.

You can specify CellSize when you create the vehicleCostmap object. However, after
you create the object, CellSize becomes read-only.

MapSize — Size of costmap grid
two-element, positive integer vector of form [nrows ncols]

This property is read-only.

Size of costmap grid, specified as a two-element, positive integer vector of the form
[nrows ncols].

• nrows is the number of grid cell rows in the costmap.
• ncols is the number of grid cell columns in the costmap.

4 Objects in Automated Driving System Toolbox

4-502

Object Functions
checkFree Check vehicle costmap for collision-free poses or points
checkOccupied Check vehicle costmap for occupied poses or points
getCosts Get cost value of cells in vehicle costmap
setCosts Set cost value of cells in vehicle costmap
plot Plot vehicle costmap

Examples

Create and Populate a Vehicle Costmap

Create a 10-by-20 meter costmap that is divided into square cells of size 0.5-by-0.5
meters. Specify a default cost value of 0.5 for all cells.

mapWidth = 10;
mapLength = 20;
costVal = 0.5;
cellSize = 0.5;

costmap = vehicleCostmap(mapWidth,mapLength,costVal,'CellSize',cellSize)

costmap =
 vehicleCostmap with properties:

 FreeThreshold: 0.2000
 OccupiedThreshold: 0.6500
 CollisionChecker: [1×1 driving.costmap.InflationCollisionChecker]
 CellSize: 0.5000
 MapSize: [40 20]
 MapExtent: [0 10 0 20]

Mark an obstacle on the costmap. Display the costmap.

occupiedVal = 0.9;
xyPoint = [2,4];
setCosts(costmap,xyPoint,occupiedVal)

plot(costmap)

 vehicleCostmap

4-503

Mark an obstacle-free area on the costmap. Display the costmap again.

freeVal = 0.15;
[X,Y] = meshgrid(3.5:cellSize:5,0.5:cellSize:1.5);
setCosts(costmap,[X(:),Y(:)],freeVal)
plot(costmap)

4 Objects in Automated Driving System Toolbox

4-504

Algorithms
To simplify checking for whether a vehicle pose is in collision, vehicleCostmap inflates
the size of obstacles. The collision-checking algorithm follows these steps:

1 Calculate the inflation radius, in world units, from the vehicle dimensions. The default
inflation radius is equal to the radius of the smallest set of overlapping circles
required to completely enclose the vehicle. The center points of the circles lie along
the longitudinal axis of the vehicle. Increasing the number of circles decreases the
inflation radius, which enables more precise collision checking.

 vehicleCostmap

4-505

Inflation Radius, One Center Inflation Radius, Three Centers

2 Convert the inflation radius to a number of grid cells, R. Round up noninteger values
of R to the next largest integer.

3 Inflate the size of obstacles using R. Label all cells in the inflated area as occupied.

The diagrams show occupied cells in dark red. Cells in the inflated area are colored
in light red. The solid black line shows the original inflation radius. In the diagram on
the left, R is 3. In the diagram on the right, R is 2.

4 Objects in Automated Driving System Toolbox

4-506

Inflated Grid Cells, One Center Inflated Grid Cells, Three Centers

4 Check whether the center points of the vehicle lie on inflated grid cells.

• If any center point lies on an inflated grid cell, then the vehicle pose is occupied.
The checkOccupied function returns true. An occupied pose does not
necessarily mean a collision. For example, the vehicle might lie on an inflated grid
cell but not on the grid cell that is actually occupied.

• If no center points lie on inflated grid cells, and the cost value of each cell
containing a center point is less than FreeThreshold, then the vehicle pose is
free. The checkFree function returns true.

• If no center points lie on inflated grid cells, and the cost value of any cell
containing a center point is greater than FreeThreshold, then the vehicle pose
is unknown. Both checkFree and checkOccupied return false.

The following poses are considered in collision because at least one center point is on an
inflated area.

 vehicleCostmap

4-507

Pose in Collision, One Center Pose in Collision, Three Centers

Compatibility Considerations

InflationRadius and VehicleDimensions properties are not
recommended
Not recommended starting in R2018b

The InflationRadius and VehicleDimensions properties of vehicleCostmap are
not recommended. Instead:

1 Use the inflationCollisionChecker function to create an
InflationCollisionChecker object, which has the properties InflationRadius
and VehicleDimensions.

2 Specify this object as the value of the CollisionChecker property of
vehicleCostmap.

There are no current plans to remove the InflationRadius and VehicleDimensions
properties of vehicleCostmap. If you do specify these properties, the values in the
corresponding properties of CollisionChecker are updated to match.

4 Objects in Automated Driving System Toolbox

4-508

When the vehicleCostmap object was introduced in R2018a, this object inflated
obstacles based on the specified inflation radius and vehicle dimensions only. The
InflationCollisionChecker object, which is specified in the CollisionChecker
property of vehicleCostmap, provides additional configuration options for inflating
obstacles. For example, you can specify the number of circles used to compute the
inflation radius, enabling more precise collision checking.

The table shows a typical usage of the InflationRadius and VehicleDimensions
properties of vehicleCostmap. It also shows how to update your code using the
corresponding properties of an InflationCollisionChecker object.

Discouraged Usage Recommended Replacement
vehicleDims = vehicleDimensions(5,2);
inflationRadius = 1.2;
costmap = vehicleCostmap(C, ...
 'VehicleDimensions',vehicleDims, ...
 'InflationRadius',inflationRadius);

vehicleDims = vehicleDimensions(5,2);
inflationRadius = 1.2;
ccConfig = inflationCollisionChecker(vehicleDims, ...
 'InflationRadius',inflationRadius);
costmap = vehicleCostmap(C, ...
 'CollisionChecker',ccConfig);

See Also
inflationCollisionChecker | pathPlannerRRT

Topics
“Automated Parking Valet”
“Create Occupancy Grid Using Monocular Camera and Semantic Segmentation”

Introduced in R2018a

 vehicleCostmap

4-509

checkFree
Check vehicle costmap for collision-free poses or points

The checkFree function checks whether vehicle poses or points are free from obstacles
on the vehicle costmap. Path planning algorithms use checkFree to check whether
candidate vehicle poses along a path are navigable.

To simplify the collision check for a vehicle pose, vehicleCostmap inflates obstacles
according to the vehicle's InflationRadius, as specified by the CollisionChecker
property of the costmap. The collision checker calculates the inflation radius by enclosing
the vehicle in a set of overlapping circles of radius R, where the centers of these circles
lie along the longitudinal axis of the vehicle. The inflation radius is the minimum R needed
to fully enclose the vehicle in these circles.

A vehicle pose is collision-free when the following conditions apply:

• None of the vehicle's circle centers lie on an inflated grid cell.
• The cost value of each containing a circle center is less than the FreeThreshold of

the costmap.

For more details, see the algorithm on page 4-505 on the vehicleCostmap reference
page.

Syntax
free = checkFree(costmap,vehiclePoses)
free = checkFree(costmap,xyPoints)
freeMat = checkFree(costmap)

Description
free = checkFree(costmap,vehiclePoses) checks whether the vehicle poses are
free from collision with obstacles on the costmap.

free = checkFree(costmap,xyPoints) checks whether (x, y) points in xyPoints
are free from collision with obstacles on the costmap.

4 Objects in Automated Driving System Toolbox

4-510

freeMat = checkFree(costmap) returns a logical matrix that indicates whether each
cell of the costmap is free.

Examples

Check If Sequence of Poses Is Collision-Free

Load a costmap from a parking lot.

data = load('parkingLotCostmap.mat');
parkMap = data.parkingLotCostmap;
plot(parkMap)

Create vehicle poses following a straight-line path. x and y are the (x,y) coordinates of
the rear axle of the vehicle. theta is the angle of the rear axle with respect to the x-axis.
Note that the dimensions of the vehicle are stored in the
CollisionChecker.VehicleDimensions property of the costmap, and that there is an
offset between the rear axle of the vehicle and its center.

x = 4:0.25:6;
y = 3:0.25:5;
theta = repmat(45,size(x));
vehiclePoses = [x',y',theta'];
hold on
plot(x,y,'b.')
hold off

 checkFree

4-511

The first few (x,y) coordinates of the rear axle are within the inflated area. However, this
does not imply a collision because the center of the vehicle may be outside the inflated
area. Check if the poses are collision-free.

free = checkFree(parkMap,vehiclePoses)

free = 9x1 logical array

 1
 1
 1
 1
 1
 1

4 Objects in Automated Driving System Toolbox

4-512

 1
 1
 1

All values of free are 1 (true), so all poses are collision-free. The center of the vehicle
does not enter the inflated area at any pose.

Input Arguments
costmap — Costmap
vehicleCostmap object

Costmap, specified as a vehicleCostmap object.

xyPoints — Points
M-by-2 numeric vector

Points, specified as an M-by-2 numeric vector that represents the (x, y) coordinates of M
points.
Example: [3.4 2.6] specifies a single point at (3.4, 2.6)
Example: [3 2;3 3;4 7] specifies three points: (3, 2), (3, 3), and (4, 7)

Output Arguments
free — Vehicle pose or point is free
M-by-1 logical vector

Vehicle pose or point is free, returned as an M-by-1 logical vector. An element of free is 1
(true) when the corresponding vehicle pose in vehiclePoses or point in xyPoints is
collision-free.

freeMat — Costmap cell is free
logical matrix

Costmap cell is free, returned as a logical matrix of the same size as the costmap grid.
This size is specified by the MapSize property of the costmap. An element of freeMat is

 checkFree

4-513

1 (true) when the corresponding cell in costmap is unoccupied and the cost value of the
cell is below the FreeThreshold of the costmap.

Tips
• If you specify a small value of InflationRadius that does not completely enclose the

vehicle, then checkFree might report occupied poses as collision-free. To avoid this
situation, the default value of InflationRadius completely encloses the vehicle.

See Also
Objects
inflationCollisionChecker | pathPlannerRRT | vehicleCostmap

Functions
checkOccupied | checkPathValidity

Introduced in R2018a

4 Objects in Automated Driving System Toolbox

4-514

checkOccupied
Check vehicle costmap for occupied poses or points

The checkOccupied function checks whether vehicle poses or points are occupied by
obstacles on the vehicle costmap. Path planning algorithms use checkOccupied to check
whether candidate vehicle poses along a path are navigable.

To simplify the collision check for a vehicle pose, vehicleCostmap inflates obstacles
according to the vehicle's InflationRadius, as specified by the CollisionChecker
property of the costmap. The collision checker calculates the inflation radius by enclosing
the vehicle in a set of overlapping circles of radius R, where the centers of these circles
lie along the longitudinal axis of the vehicle. The inflation radius is the minimum R needed
to fully enclose the vehicle in these circles. A vehicle pose is collision-free when none of
the centers of these circles lie on an inflated grid cell. For more details, see the algorithm
on page 4-505 on the vehicleCostmap reference page.

Syntax
occ = checkOccupied(costmap,vehiclePoses)
occ = checkOccupied(costmap,xyPoints)
occMat = checkOccupied(costmap)

Description
occ = checkOccupied(costmap,vehiclePoses) checks whether the vehicle poses
are occupied.

occ = checkOccupied(costmap,xyPoints) checks whether (x, y) points in
xyPoints are occupied.

occMat = checkOccupied(costmap) returns a logical matrix that indicates whether
each cell of the costmap is occupied.

Examples

 checkOccupied

4-515

Check If Sequence of Poses Enters Occupied Cell

Load a costmap from a parking lot.

data = load('parkingLotCostmap.mat');
parkMap = data.parkingLotCostmap;
plot(parkMap)

Create vehicle poses following a straight-line path. x and y are the (x,y) coordinates of
the rear axle of the vehicle. theta is the angle of the rear axle with respect to the x-axis.
Note that the dimensions of the vehicle are stored in the vehicleDimensions property
of the costmap, and that there is an offset between the rear axle of the vehicle and its
center.

x = 6:0.25:10;
y = repmat(5,size(x));
theta = zeros(size(x));
vehiclePoses = [x',y',theta'];
hold on
plot(x,y,'b.')

4 Objects in Automated Driving System Toolbox

4-516

Check if the poses are occupied.

occ = checkOccupied(parkMap,vehiclePoses)

occ = 17x1 logical array

 0
 0
 0
 0
 0
 1
 1
 1

 checkOccupied

4-517

 1
 1
 ⋮

The vehicle poses are occupied beginning with the sixth pose. In other words, the center
of the vehicle in the sixth pose lies within the inflation radius of an occupied grid cell.

Input Arguments
costmap — Costmap
vehicleCostmap object

Costmap, specified as a vehicleCostmap object.

vehiclePoses — Vehicle poses
M-by-3 numeric vector

Vehicle poses, specified as an M-by-3 numeric vector. Each row corresponds to a pose of
the form [x, y, theta]. The coordinates x and y must be specified with respect to the center
of the rear axle of the vehicle, and are in world units. The heading angle theta is
measured in degrees with respect to the x-axis.
Example: [3.4 2.6 0] specifies a vehicle with the center of the rear axle at (3.4, 2.6)
and a heading angle of 0 degrees with respect to the x-axis.

xyPoints — Points
M-by-2 numeric vector

Points, specified as an M-by-2 numeric vector that represents the (x, y) coordinates of M
points.
Example: [3.4 2.6] specifies a single point at (3.4, 2.6)
Example: [3 2;3 3;4 7] specifies three points: (3, 2), (3, 3), and (4, 7)

Output Arguments
occ — Vehicle pose or point is occupied
M-by-1 logical vector

4 Objects in Automated Driving System Toolbox

4-518

Vehicle pose or point is occupied, returned as an M-by-1 logical vector. An element of occ
is 1 (true) when the corresponding vehicle pose in vehiclePoses or planar point in
xyPoints is occupied.

occMat — Costmap cell is occupied
logical matrix

Costmap cell is occupied, returned as a logical matrix of the same size as the costmap
grid. This size is specified by the MapSize property of the costmap. An element of
occMat is 1 (true) when the corresponding cell in costmap is occupied.

See Also
Objects
inflationCollisionChecker | pathPlannerRRT | vehicleCostmap

Functions
checkFree | checkPathValidity

Introduced in R2018a

 checkOccupied

4-519

getCosts
Get cost value of cells in vehicle costmap

Syntax
costVals = getCosts(costmap,xyPoints)
costMat = getCosts(costmap)

Description
costVals = getCosts(costmap,xyPoints) returns a vector, costVals, that
contains the costs for the (x, y) points in xyPoints in the vehicle costmap.

costMat = getCosts(costmap) returns a matrix, costMat, that contains the cost of
each cell in the costmap.

Examples

Get Cost Matrix and Set Cost Values

Create a 5-by-10 meter vehicle costmap. Cells have side length 1, in the world units of
meters. Set the inflation radius to 1. Plot the costmap, and get the default cost matrix.

costmap = vehicleCostmap(5,10);
costmap.CollisionChecker.InflationRadius = 1;
plot(costmap)
title('Default Costmap')

4 Objects in Automated Driving System Toolbox

4-520

getCosts(costmap)

ans = 10×5

 0.4250 0.4250 0.4250 0.4250 0.4250
 0.4250 0.4250 0.4250 0.4250 0.4250
 0.4250 0.4250 0.4250 0.4250 0.4250
 0.4250 0.4250 0.4250 0.4250 0.4250
 0.4250 0.4250 0.4250 0.4250 0.4250
 0.4250 0.4250 0.4250 0.4250 0.4250
 0.4250 0.4250 0.4250 0.4250 0.4250
 0.4250 0.4250 0.4250 0.4250 0.4250
 0.4250 0.4250 0.4250 0.4250 0.4250

 getCosts

4-521

 0.4250 0.4250 0.4250 0.4250 0.4250

Mark an obstacle at the (x,y) coordinate (3,4) by increasing the cost of that cell.

setCosts(costmap,[3,4],0.8);
plot(costmap)
title('Costmap with Obstacle at (3,4)')

Get the cost of three cells: the cell with the obstacle, a cell adjacent to the obstacle, and a
cell outside the inflation radius of the obstacle.

costVal = getCosts(costmap,[3 4;2 4;4 7])

4 Objects in Automated Driving System Toolbox

4-522

costVal = 3×1

 0.8000
 0.4250
 0.4250

Although the plot of the costmap displays the cell with the obstacle and its adjacent cells
in shades of red, only the cell with the obstacle has a higher cost value of 0.8. The other
cells still have the default cost value of 0.425.

Input Arguments
costmap — Costmap
vehicleCostmap object

Costmap, specified as a vehicleCostmap object.

xyPoints — Points
M-by-2 numeric vector

Points, specified as an M-by-2 numeric vector that represents the (x, y) coordinates of M
points.
Example: [3.4 2.6] specifies a single point at (3.4, 2.6)
Example: [3 2;3 3;4 7] specifies three points: (3, 2), (3, 3), and (4, 7)

Output Arguments
costVals — Cost of points
M-element numeric vector

Cost of points in xyPoints, returned as an M-element numeric vector.

costMat — Cost of all cells
numeric matrix

Cost of all cells in costmap, returned as a numeric matrix of the same size as the
costmap grid. This size is specified by the MapSize property of the costmap.

 getCosts

4-523

See Also
setCosts | vehicleCostmap

Introduced in R2018a

4 Objects in Automated Driving System Toolbox

4-524

plot
Plot vehicle costmap

The plot function displays a vehicle costmap. The darkness of each cell is proportional to
the cost value of the cell. Cells with low cost are bright, and cells containing obstacles
with high cost are dark. Inflated areas are displayed with a red hue, and cells outside the
inflated area are displayed in grayscale.

Syntax
plot(costmap)
plot(costmap,Name,Value)

Description
plot(costmap) plots the vehicle costmap in the current axes.

plot(costmap,Name,Value) plots the vehicle costmap using name-value pair
arguments to specify the parent axes or to adjust the display of inflated areas.

Examples

Display a Vehicle on a Costmap

Load a costmap from a parking lot. Display the costmap.

data = load('parkingLotCostmap.mat');
parkMap = data.parkingLotCostmap;
plot(parkMap)

Create a template polyshape object with the dimensions of the car.

carDims = parkMap.CollisionChecker.VehicleDimensions

 plot

4-525

carDims =
 vehicleDimensions with properties:

 Length: 4.7000
 Width: 1.8000
 Height: 1.4000
 Wheelbase: 2.8000
 RearOverhang: 1
 FrontOverhang: 0.9000
 WorldUnits: 'meters'

ro = carDims.RearOverhang;
fo = carDims.FrontOverhang;
wb = carDims.Wheelbase;
hw = carDims.Width/2;
X = [-ro,wb+fo,wb+fo,-ro];
Y = [-hw,-hw,hw,hw];
templateShape = polyshape(X',Y');

Create a function handle to move the template to a specified vehicle pose. This move
function translates the polyshape s to the coordinate (x,y) and then rotates the polyshape
by an angle theta about the point (x,y).

move = @(s,x,y,theta) rotate(translate(s,[x,y]), ...
 theta,[x,y]);

Move the car template to a pose.

carPose = [5,5,75];
carShape = move(templateShape,carPose(1),carPose(2),carPose(3));

Plot the car on the costmap.

hold on
plot(carShape)

4 Objects in Automated Driving System Toolbox

4-526

Input Arguments
costmap — Costmap
vehicleCostmap object

Costmap, specified as a vehicleCostmap object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 plot

4-527

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Inflation','off'

Inflation — Display inflated areas
'on' (default) | 'off'

Display inflated areas, specified as the comma-separated pair consisting of 'Inflation'
and one of the following.

• 'on'—Cells in the inflated area have a red hue.
• 'off'—Cells containing obstacles have a red hue, but other cells in the inflated area

are displayed in grayscale.

Parent — Axes on which to plot costmap
axes handle

Axes on which to plot the costmap, specified as the comma-separated pair consisting of
'Parent' and an axes handle. By default, plot uses the current axes handle, which is
returned by the gca function.

See Also
polyshape | vehicleCostmap | vehicleDimensions

Introduced in R2018a

4 Objects in Automated Driving System Toolbox

4-528

setCosts
Set cost value of cells in vehicle costmap

Syntax
setCosts(costmap,xyPoints,costVals)

Description
setCosts(costmap,xyPoints,costVals) sets the costs, costVals, for the (x, y)
points in xyPoints in the vehicle costmap.

Examples

Mark Rectangular Obstacle on Vehicle Costmap

Create a 5-by-10 meter vehicle costmap. Cells have side length 1, in the world units of
meters. Specify the inflation radius as 2 meters.

costmap = vehicleCostmap(10,15,'InflationRadius',2);

Define a set of (x,y) coordinates that correspond to a 3-by-5 meter rectangle.

[x,y] = meshgrid(2:4,2:6);
xyPoints = [x(:),y(:)];

Mark the rectangular obstacle by increasing the cost of its cells to 0.9.

costVal = 0.9;
setCosts(costmap,xyPoints,costVal);
plot(costmap)
title('Costmap with Rectangular Obstacle')

 setCosts

4-529

Input Arguments
costmap — Costmap
vehicleCostmap object

Costmap, specified as a vehicleCostmap object.

xyPoints — Points
M-by-2 numeric vector

Points, specified as an M-by-2 numeric vector that represents the (x, y) coordinates of M
points.

4 Objects in Automated Driving System Toolbox

4-530

Example: [3.4 2.6] specifies a single point at (3.4, 2.6)
Example: [3 2;3 3;4 7] specifies three points: (3, 2), (3, 3), and (4, 7)

costVals — Cost of points
M-element numeric vector

Cost of points in xyPoints, specified as an M-element numeric vector.
Example: 0.8 specifies the cost of a single point
Example: [0.2 0.5 0.8] specifies the cost of three points

See Also
getCosts | vehicleCostmap

Introduced in R2018a

 setCosts

4-531

vehicleDimensions
Store vehicle dimensions

Description
The vehicleDimensions object stores vehicle dimensions. The figure shows the
dimensions that are included in the vehicleDimensions.

The position of the vehicle is often represented as a single point located on the ground at
the center of the rear axle, as indicated by the red dot in the figure. This position
corresponds to the natural center of rotation of the vehicle.

The table lists typical vehicle types and their corresponding dimensions.

4 Objects in Automated Driving System Toolbox

4-532

Vehicle
Classificat
ion

Length Width Height Wheelbas
e

Front
Overhang

Rear
Overhang

Automobile
(sedan)

4.7 m 1.8 m 1.4 m 2.8 m 0.9 m 1.0 m

Motorcycle 2.2 m 0.6 m 1.5 m 1.51 m 0.37 m 0.32 m

Creation

Syntax
vdims = vehicleDimensions
vdims = vehicleDimensions(l,w,h)
vdims = vehicleDimensions(___ ,Name,Value)

Description
vdims = vehicleDimensions creates a vehicleDimensions object with a default
length of 4.7 m, width of 1.8 m, and height of 1.4 m.

vdims = vehicleDimensions(l,w,h) creates a vehicleDimensions object and
sets the Length, Width, and Height properties.

vdims = vehicleDimensions(___ ,Name,Value) uses one or more name-value pair
arguments to set the Wheelbase, FrontOverhang, RearOverhang, and WorldUnits
properties. Name is the property name and Value is the corresponding value. Name must
appear inside single quotes (' '). You can specify several name and value pair arguments
in any order as Name1,Value1,...,NameN,ValueN.

Properties
Length — Length of vehicle
4.7 (default) | positive scalar

Length of vehicle, specified as a positive scalar.

 vehicleDimensions

4-533

Data Types: double

Width — Width of vehicle
1.8 (default) | positive scalar

Width of vehicle, specified as a positive scalar.
Data Types: double

Height — Height of vehicle
1.4 (default) | positive scalar

Height of vehicle, specified as a positive scalar.
Data Types: double

FrontOverhang — Front overhang of vehicle
0.9 (default) | numeric scalar

Front overhang of vehicle, specified as a numeric scalar. The front overhang is the
distance between the front of the vehicle and the front axle. FrontOverhang can be
negative.
Data Types: double

RearOverhang — Rear overhang of vehicle
1.0 (default) | numeric scalar

Rear overhang of vehicle, specified as a numeric scalar. The rear overhang is the distance
between the rear of the vehicle and the rear axle. RearOverhang can be negative.
Data Types: double

Wheelbase — Distance between axles
2.8 (default) | positive scalar

The distance between the front and rear axles of the vehicle, specified as a positive scalar.
Data Types: double

WorldUnits — Units of measurement
'meters' (default) | character array

Units of measurement, specified as a character array. The units do not affect the values of
measurements.

4 Objects in Automated Driving System Toolbox

4-534

Examples

Specify Dimensions of a Motorcycle

Store the dimensions of a motorcycle with length 2.2, width 0.6, and height 1.5 meters.
Also specify the distance that the motorcycle extends ahead of the front axle and behind
the rear axle.

vdims = vehicleDimensions(2.2,0.6,1.5, ...
 'FrontOverhang',0.37,'RearOverhang',0.32)

vdims =
 vehicleDimensions with properties:

 Length: 2.2000
 Width: 0.6000
 Height: 1.5000
 Wheelbase: 1.5100
 RearOverhang: 0.3200
 FrontOverhang: 0.3700
 WorldUnits: 'meters'

Tips
• The Length of the vehicle is the sum of the Wheelbase, FrontOverhang, and

RearOverhang. If you change FrontOverhang, then the value of Wheelbase
automatically adjusts to keep Length constant. Any change resulting in a negative
wheelbase causes an error.

• You can use the vehicle dimensions to define a vehicleCostmap that represents the
planning search space around a vehicle. Path planning algorithms, such as
pathPlannerRRT, use vehicle dimensions to find a path for the vehicle to follow.

See Also
vehicle | vehicleCostmap

 vehicleDimensions

4-535

Introduced in R2018a

4 Objects in Automated Driving System Toolbox

4-536

driving.Path
Planned vehicle path

Description
The driving.Path object represents a vehicle path composed of a sequence of path
segments. These segments can be either driving.DubinsPathSegment objects or
driving.ReedsSheppPathSegment objects and are stored in the PathSegments
property of driving.Path.

To check the validity of the path against a vehicleCostmap object, use the
checkPathValidity function. To interpolate poses along the length of the path, use the
interpolate function.

Creation
To create a driving.Path object, use the plan function, specifying a pathPlannerRRT
object as input.

Properties
StartPose — Initial pose of vehicle
[x, y, Θ] vector

This property is read-only.

Initial pose of the vehicle, specified as an [x, y, Θ] vector. x and y are in world units, such
as meters. Θ is in degrees.

GoalPose — Goal pose of vehicle
[x, y, Θ] vector

This property is read-only.

 driving.Path

4-537

Goal pose of the vehicle, specified as an [x, y, Θ] vector. x and y are in world units, such as
meters. Θ is in degrees.

PathSegments — Segments along path
array of driving.DubinsPathSegment objects | array of
driving.ReedsSheppPathSegment objects

This property is read-only.

Segments along the path, specified as an array of driving.DubinsPathSegment
objects or driving.ReedsSheppPathSegment objects.

Length — Length of path
positive scalar

This property is read-only.

Length of the path, in world units, specified as a positive scalar.

Object Functions
interpolate Interpolate poses along planned vehicle path
plot Plot planned vehicle path

Examples

Plan Path and Check Its Validity

Plan a vehicle path through a parking lot by using the optimal rapidly exploring random
tree (RRT*) algorithm. Check that the path is valid, and then plot the transition poses
along the path.

Load a costmap of a parking lot. Plot the costmap to see the parking lot and inflated areas
for the vehicle to avoid.

data = load('parkingLotCostmap.mat');
costmap = data.parkingLotCostmap;
plot(costmap)

4 Objects in Automated Driving System Toolbox

4-538

Define start and goal poses for the vehicle as [x, y, Θ] vectors. World units for the (x,y)
locations are in meters. World units for the Θ orientation angles are in degrees.

startPose = [4, 4, 90]; % [meters, meters, degrees]
goalPose = [30, 13, 0];

Use a pathPlannerRRT object to plan a path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);

Check that the path is valid.

isPathValid = checkPathValidity(refPath,costmap)

 driving.Path

4-539

isPathValid = logical
 1

Interpolate the transition poses along the path.

transitionPoses = interpolate(refPath);

Plot the planned path and the transition poses on the costmap.

hold on
plot(refPath,'DisplayName','Planned Path')
scatter(transitionPoses(:,1),transitionPoses(:,2),[],'filled', ...
 'DisplayName','Transition Poses')
hold off

4 Objects in Automated Driving System Toolbox

4-540

Plan Path and Interpolate Along Path

Plan a vehicle path through a parking lot by using the rapidly exploring random tree
(RRT*) algorithm. Interpolate the poses of the vehicle at points along the path.

Load a costmap of a parking lot. Plot the costmap to see the parking lot and inflated areas
for the vehicle to avoid.

data = load('parkingLotCostmap.mat');
costmap = data.parkingLotCostmap;
plot(costmap)

 driving.Path

4-541

Define start and goal poses for the vehicle as [x, y, Θ] vectors. World units for the (x,y)
locations are in meters. World units for the Θ orientation angles are in degrees.

startPose = [4, 4, 90]; % [meters, meters, degrees]
goalPose = [30, 13, 0];

Use a pathPlannerRRT object to plan a path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);

Interpolate the vehicle poses every 1 meter along the entire path.

lengths = 0 : 1 : refPath.Length;
poses = interpolate(refPath,lengths);

Plot the interpolated poses on the costmap.

plot(costmap)
hold on
scatter(poses(:,1),poses(:,2),'DisplayName','Interpolated Poses')
hold off

4 Objects in Automated Driving System Toolbox

4-542

Compatibility Considerations

connectingPoses function and driving.Path object
properties KeyPoses and NumSegments are not recommended
Not recommended starting in R2018b

The connectingPoses function and the KeyPoses and NumSegments properties of the
driving.Path object are not recommended. Instead, use the interpolate function,
which returns key poses, connecting poses, transition poses, and direction changes. The

 driving.Path

4-543

KeyPoses and NumSegments properties are no longer relevant. KeyPoses,
NumSegments, and connectingPoses will be removed in a future release.

In R2018a, connectingPoses enabled you to obtain intermediate poses either along the
entire path or along the path segments that are between key poses (as specified by
KeyPoses). Using the interpolate function, you can now obtain intermediate poses at
any specified point along the path. The interpolate function also provides transition
poses at which changes in direction occur.

Remove all instances of KeyPoses and NumSegments and replace all instances of
connectingPoses with interpolate. The table shows typical usages of
connectingPoses and how to update your code to use interpolate instead. Here,
path is a driving.Path object returned by pathPlannerRRT.

Discouraged Usage Recommended Replacement
poses = connectingPoses(path); poses = interpolate(path);
segID = 1;
posesSegment = connectingPoses(path,segID);

interpolate does not have a direct
syntax for obtaining segment poses.
However, you can sample poses of a
segment using a specified step time. For
example:

step = 0.1;
samples = 0 : step : path.PathSegments(1).Length;
segmentPoses = interpolate(path,samples);

See Also
Functions
checkPathValidity | interpolate | plan | plot

Objects
driving.DubinsPathSegment | driving.ReedsSheppPathSegment |
pathPlannerRRT | vehicleCostmap

Topics
“Automated Parking Valet”

4 Objects in Automated Driving System Toolbox

4-544

Introduced in R2018a

 driving.Path

4-545

connectingPoses
Package: driving

(Not recommended) Obtain connecting poses along vehicle path

Note connectingPoses is not recommended. Use interpolate instead. For more
information, see “Compatibility Considerations”

Syntax
poses = connectingPoses(path)
poses = connectingPoses(path,segID)
poses = connectingPoses(___ ,'NumSamples',numSamples)

Description
poses = connectingPoses(path) returns the connecting poses that are between the
key poses of a vehicle path.

poses = connectingPoses(path,segID) returns the connecting poses that are along
the path segment specified by segID.

poses = connectingPoses(___ ,'NumSamples',numSamples) specifies the
number of connecting poses to compute between successive key poses, using either of the
preceding syntaxes.

Input Arguments
path — Planned vehicle path
driving.Path object

Planned vehicle path from which to obtain connecting poses, specified as a
driving.Path object.

4 Objects in Automated Driving System Toolbox

4-546

segID — ID of path segment
positive integer

ID of the path segment from which to obtain connecting poses, specified as a positive
integer. Each path segment has two successive key poses as its endpoints. segID must be
less than the number of segments in the input path.

numSamples — Number of connecting poses to sample
100 (default) | integer greater than 1

Number of connecting poses to sample from each segment, specified as an integer
greater than 1.
Example: 'NumSamples',50

Output Arguments
poses — Connecting poses
m-by-3 matrix of [x, y, Θ] poses

Connecting poses, returned as an m-by-3 matrix of [x, y, Θ] poses. Each row corresponds
to a separate pose. x and y are specified in world coordinates and Θ is in degrees. poses
includes all key poses.

Compatibility Considerations

connectingPoses function and driving.Path object
properties KeyPoses and NumSegments are not recommended
Not recommended starting in R2018b

The connectingPoses function and the KeyPoses and NumSegments properties of the
driving.Path object are not recommended. Instead, use the interpolate function,
which returns key poses, connecting poses, transition poses, and direction changes. The
KeyPoses and NumSegments properties are no longer relevant. KeyPoses,
NumSegments, and connectingPoses will be removed in a future release.

In R2018a, connectingPoses enabled you to obtain intermediate poses either along the
entire path or along the path segments that are between key poses (as specified by

 connectingPoses

4-547

KeyPoses). Using the interpolate function, you can now obtain intermediate poses at
any specified point along the path. The interpolate function also provides transition
poses at which changes in direction occur.

Remove all instances of KeyPoses and NumSegments and replace all instances of
connectingPoses with interpolate. The table shows typical usages of
connectingPoses and how to update your code to use interpolate instead. Here,
path is a driving.Path object returned by pathPlannerRRT.

Discouraged Usage Recommended Replacement
poses = connectingPoses(path); poses = interpolate(path);
segID = 1;
posesSegment = connectingPoses(path,segID);

interpolate does not have a direct
syntax for obtaining segment poses.
However, you can sample poses of a
segment using a specified step time. For
example:

step = 0.1;
samples = 0 : step : path.PathSegments(1).Length;
segmentPoses = interpolate(path,samples);

See Also
Functions
checkPathValidity | interpolate | plan

Objects
driving.Path | pathPlannerRRT

Topics
“Automated Parking Valet”

Introduced in R2018a

4 Objects in Automated Driving System Toolbox

4-548

plot
Package: driving

Plot planned vehicle path

Syntax
plot(refPath)
plot(refPath,Name,Value)

Description
plot(refPath) plots the planned vehicle path.

plot(refPath,Name,Value) specifies options using one or more name-value pair
arguments. For example, plot(path,'Vehicle','off') plots the path without
displaying the vehicle.

Examples

Plan Path and Check Its Validity

Plan a vehicle path through a parking lot by using the optimal rapidly exploring random
tree (RRT*) algorithm. Check that the path is valid, and then plot the transition poses
along the path.

Load a costmap of a parking lot. Plot the costmap to see the parking lot and inflated areas
for the vehicle to avoid.

data = load('parkingLotCostmap.mat');
costmap = data.parkingLotCostmap;
plot(costmap)

 plot

4-549

Define start and goal poses for the vehicle as [x, y, Θ] vectors. World units for the (x,y)
locations are in meters. World units for the Θ orientation angles are in degrees.

startPose = [4, 4, 90]; % [meters, meters, degrees]
goalPose = [30, 13, 0];

Use a pathPlannerRRT object to plan a path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);

Check that the path is valid.

isPathValid = checkPathValidity(refPath,costmap)

4 Objects in Automated Driving System Toolbox

4-550

isPathValid = logical
 1

Interpolate the transition poses along the path.

transitionPoses = interpolate(refPath);

Plot the planned path and the transition poses on the costmap.

hold on
plot(refPath,'DisplayName','Planned Path')
scatter(transitionPoses(:,1),transitionPoses(:,2),[],'filled', ...
 'DisplayName','Transition Poses')
hold off

 plot

4-551

Input Arguments
refPath — Planned vehicle path
driving.Path object

Planned vehicle path, specified as a driving.Path object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Inflation','off'

Parent — Axes object
axes object

Axes object in which to draw the plot, specified as the comma-separated pair consisting of
'Parent' and an axes object. If you do not specify Parent, a new figure is created.

Vehicle — Display vehicle
'on' (default) | 'off'

Display vehicle, specified as the comma-separated pair consisting of 'Vehicle' and
'on' or 'off'. Setting this argument to 'on' displays the vehicle along the path.

VehicleDimensions — Dimensions of vehicle
vehicleDimensions object

Dimensions of the vehicle, specified as the comma-separated pair consisting of
'VehicleDimensions' and a vehicleDimensions object.

DisplayName — Name of entry in legend
'' (default) | character vector | string scalar

Name of the entry in the legend, specified as the comma-separated pair consisting of
'DisplayName' and a character vector or string scalar.

4 Objects in Automated Driving System Toolbox

4-552

Color — Color of path
RGB triplet

Color of the path, specified as the comma-separated pair consisting of 'Color' and an
RGB triplet in the range [0, 1]. For details on specifying RGB triplets, see ColorSpec
(Color Specification).

Tag — Tag to identify path
'' (default) | character vector | string scalar

Tag to identify path, specified as the comma-separated pair consisting of 'Tag' and a
character vector or string scalar.

See Also
Functions
checkPathValidity | interpolate | plan

Objects
driving.Path | pathPlannerRRT | vehicleDimensions

Topics
“Automated Parking Valet”

Introduced in R2018a

 plot

4-553

interpolate
Package: driving

Interpolate poses along planned vehicle path

Syntax
poses = interpolate(refPath)
poses = interpolate(refPath,lengths)
[poses,directions] = interpolate(___)

Description
poses = interpolate(refPath) interpolates along the length of a reference path,
returning transition poses. For more information, see Transition Poses on page 4-561.

poses = interpolate(refPath,lengths) interpolates poses at specified points
along the length of the path. In addition to including poses corresponding to specified
lengths, poses also includes the transition poses.

[poses,directions] = interpolate(___) also returns the motion directions of
the vehicle at each pose, using inputs from any of the preceding syntaxes.

Examples

Plan Path and Check Its Validity

Plan a vehicle path through a parking lot by using the optimal rapidly exploring random
tree (RRT*) algorithm. Check that the path is valid, and then plot the transition poses
along the path.

Load a costmap of a parking lot. Plot the costmap to see the parking lot and inflated areas
for the vehicle to avoid.

4 Objects in Automated Driving System Toolbox

4-554

data = load('parkingLotCostmap.mat');
costmap = data.parkingLotCostmap;
plot(costmap)

Define start and goal poses for the vehicle as [x, y, Θ] vectors. World units for the (x,y)
locations are in meters. World units for the Θ orientation angles are in degrees.

startPose = [4, 4, 90]; % [meters, meters, degrees]
goalPose = [30, 13, 0];

Use a pathPlannerRRT object to plan a path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);

 interpolate

4-555

Check that the path is valid.

isPathValid = checkPathValidity(refPath,costmap)

isPathValid = logical
 1

Interpolate the transition poses along the path.

transitionPoses = interpolate(refPath);

Plot the planned path and the transition poses on the costmap.

hold on
plot(refPath,'DisplayName','Planned Path')
scatter(transitionPoses(:,1),transitionPoses(:,2),[],'filled', ...
 'DisplayName','Transition Poses')
hold off

4 Objects in Automated Driving System Toolbox

4-556

Plan Path and Interpolate Along Path

Plan a vehicle path through a parking lot by using the rapidly exploring random tree
(RRT*) algorithm. Interpolate the poses of the vehicle at points along the path.

Load a costmap of a parking lot. Plot the costmap to see the parking lot and inflated areas
for the vehicle to avoid.

data = load('parkingLotCostmap.mat');
costmap = data.parkingLotCostmap;
plot(costmap)

 interpolate

4-557

Define start and goal poses for the vehicle as [x, y, Θ] vectors. World units for the (x,y)
locations are in meters. World units for the Θ orientation angles are in degrees.

startPose = [4, 4, 90]; % [meters, meters, degrees]
goalPose = [30, 13, 0];

Use a pathPlannerRRT object to plan a path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);

Interpolate the vehicle poses every 1 meter along the entire path.

lengths = 0 : 1 : refPath.Length;
poses = interpolate(refPath,lengths);

4 Objects in Automated Driving System Toolbox

4-558

Plot the interpolated poses on the costmap.

plot(costmap)
hold on
scatter(poses(:,1),poses(:,2),'DisplayName','Interpolated Poses')
hold off

Input Arguments
refPath — Planned vehicle path
driving.Path object

 interpolate

4-559

Planned vehicle path, specified as a driving.Path object.

lengths — Points along length of path
numeric vector

Points along the length of the path, specified as a numeric vector. Values must be in the
range from 0 to the length of the path, as determined by the Length property of
refPath. The interpolate function interpolates poses at these specified points.
lengths is in world units, such as meters.
Example: poses = interpolate(refPath,0:0.1:refPath.Length) interpolates
poses every 0.1 meter along the entire length of the path.

Output Arguments
poses — Vehicle poses
m-by-3 matrix of [x, y, Θ] vectors

Vehicle poses along the path, returned as an m-by-3 matrix of [x, y, Θ] vectors. m is the
number of returned poses.

x and y specify the location of the vehicle in world units, such as meters. Θ specifies the
orientation angle of the vehicle in degrees.

poses always includes the transition poses, even if you interpolate only at specified
points along the path. If you do not specify the lengths input argument, then poses
includes only the transition poses.

directions — Motion directions
m-by-1 vector of 1s (forward motion) and –1s (reverse motion)

Motion directions of vehicle poses, returned as an m-by-1 vector of 1s (forward motion)
and –1s (reverse motion). m is the number of returned poses. Each element of
directions corresponds to a row of poses.

4 Objects in Automated Driving System Toolbox

4-560

Definitions

Transition Poses
Transition poses are vehicle poses corresponding to the end of one motion and the
beginning of another motion. They represent points along the path corresponding to a
change in the direction or orientation of the vehicle. The interpolate function always
returns transition poses, even if you interpolate only at specified points along the path.

The path length between transition poses is given by the MotionLengths property of the
path segments. For example, consider the following path, which is a driving.Path
object composed of a single Dubins path segment. This segment consists of three motions,
as described by the MotionLengths and MotionTypes properties of the segment.

The interpolate function interpolates the following transition poses in this order:

 interpolate

4-561

1 The initial pose of the vehicle, StartPose.
2 The pose after the vehicle turns left ("L") for 4.39 meters at its maximum steering

angle.
3 The pose after the vehicle goes straight ("S") for 6.32 meters.
4 The pose after the vehicle turns right ("R") for 4.39 meters at its maximum steering

angle. This pose is also the goal pose, because it is the last pose of the entire path.

The plot shows these transition poses, which are [x, y, Θ] vectors. x and y specify the
location of the vehicle in world units, such as meters. Θ specifies the orientation angle of
the vehicle in degrees.

4 Objects in Automated Driving System Toolbox

4-562

See Also
Functions
checkPathValidity

 interpolate

4-563

Objects
driving.Path | pathPlannerRRT

Topics
“Automated Parking Valet”

Introduced in R2018b

4 Objects in Automated Driving System Toolbox

4-564

driving.DubinsPathSegment
Dubins path segment

Description
A driving.DubinsPathSegment object represents a segment of a planned vehicle path
that was connected using the Dubins connection method [1]. A Dubins path segment is
composed of a sequence of three motions. Each motion is one of these types:

• Straight
• Left turn at the maximum steering angle of the vehicle
• Right turn at the maximum steering angle of the vehicle

A vehicle path composed of Dubins path segments allows motion in the forward direction
only.

The driving.DubinsPathSegment objects that represent a path are stored in the
PathSegments property of a driving.Path object. These paths are planned by a
pathPlannerRRT object whose ConnectionMethod property is set to 'Dubins'.

Properties
StartPose — Initial pose of vehicle
[x, y, Θ] vector

This property is read-only.

Initial pose of the vehicle at the start of the path segment, specified as an [x, y, Θ] vector.
x and y are in world units, such as meters. Θ is in degrees.

GoalPose — Goal pose of vehicle
[x, y, Θ] vector

This property is read-only.

 driving.DubinsPathSegment

4-565

Goal pose of the vehicle at the end of the path segment, specified as an [x, y, Θ] vector. x
and y are in world units, such as meters. Θ is in degrees.

MinTurningRadius — Minimum turning radius of vehicle
positive scalar

This property is read-only.

Minimum turning radius of the vehicle, in world units, specified as a positive scalar. This
value corresponds to the radius of the turning circle at the maximum steering angle of the
vehicle.

MotionLengths — Length of each motion
three-element numeric vector

This property is read-only.

Length of each motion in the path segment, in world units, specified as a three-element
numeric vector. Each motion length corresponds to a motion type specified in
MotionTypes.

MotionTypes — Type of each motion
three-element string array

This property is read-only.

Type of each motion in the path segment, specified as a three-element string array. Valid
values are shown in this table.

Motion Type Description
"S" Straight
"L" Left turn at the maximum steering angle of

the vehicle
"R" Right turn at the maximum steering angle

of the vehicle

Each motion type corresponds to a motion length specified in MotionLengths.
Example: ["R" "S" "R"]

Length — Length of path segment
positive scalar

4 Objects in Automated Driving System Toolbox

4-566

This property is read-only.

Length of the path segment, in world units, specified as a positive scalar.

References
[1] Shkel, Andrei M., and Vladimir Lumelsky. "Classification of the Dubins Set." Robotics

and Autonomous Systems. Vol. 34, Number 4, 2001, pp. 179–202.

See Also
Objects
driving.Path | driving.ReedsSheppPathSegment | pathPlannerRRT

Topics
“Automated Parking Valet”

Introduced in R2018b

 driving.DubinsPathSegment

4-567

driving.ReedsSheppPathSegment
Reeds-Shepp path segment

Description
A driving.ReedsSheppPathSegment object represents a segment of a planned vehicle
path that was connected using the Reeds-Shepp connection method [1]. A Reeds-Shepp
path segment is composed of a sequence of three to five motions. Each motion is one of
these types:

• Straight (forward or reverse)
• Left turn at the maximum steering angle of the vehicle (forward or reverse)
• Right turn at the maximum steering angle of the vehicle (forward or reverse)

The driving.ReedsSheppPathSegment objects that represent a path are stored in the
PathSegments property of a driving.Path object. These paths are planned by a
pathPlannerRRT object whose ConnectionMethod property is set to 'Dubins'.

Properties
StartPose — Initial pose of vehicle
[x, y, Θ] vector

This property is read-only.

Initial pose of the vehicle at the start of the path segment, specified as an [x, y, Θ] vector.
x and y are in world units, such as meters. Θ is in degrees.

GoalPose — Goal pose of vehicle
[x, y, Θ] vector

This property is read-only.

Goal pose of the vehicle at the end of the path segment, specified as an [x, y, Θ] vector. x
and y are in world units, such as meters. Θ is in degrees.

4 Objects in Automated Driving System Toolbox

4-568

MinTurningRadius — Minimum turning radius of vehicle
positive scalar

This property is read-only.

Minimum turning radius of the vehicle, in world units, specified as a positive scalar. This
value corresponds to the radius of the turning circle at the maximum steering angle of the
vehicle.

MotionLengths — Length of each motion
five-element numeric vector

This property is read-only.

Length of each motion in the path segment, in world units, specified as a five-element
numeric vector. Each motion length corresponds to a motion type specified in
MotionTypes and a motion direction specified in MotionDirections.

When a path segment requires fewer than five motions, the remaining MotionLengths
elements are set to 0. The remaining MotionTypes elements are set to "N" (no motion).

MotionTypes — Type of each motion
five-element string array

This property is read-only.

Type of each motion in the path segment, specified as a five-element string array. Valid
values are shown in this table.

Motion Type Description
"S" Straight (forward or reverse)
"L" Left turn at the maximum steering angle of

the vehicle (forward or reverse)
"R" Right turn at the maximum steering angle

of the vehicle (forward or reverse)
"N" No motion

MotionTypes contains a minimum of three motions, specified as a combination of "S",
"L", and "R" elements. If a path segment has fewer than five motions, the remaining
elements of MotionTypes are "N" (no motion).

 driving.ReedsSheppPathSegment

4-569

Each motion type corresponds to a motion length specified in MotionLengths and a
motion direction specified in MotionDirections.
Example: ["R" "S" "R" "L" "N"]

MotionDirections — Direction of each motion
five-element vector of 1s (forward motion) and –1s (reverse motion)

This property is read-only.

Direction of each motion in the path segment, specified as a five-element vector of 1s
(forward motion) and –1s (reverse motion). Each motion direction corresponds to a
motion length specified in MotionLengths and a motion type specified in MotionTypes.

When no motion occurs, that is, when a MotionTypes value is "N", then the
corresponding MotionDirections element is 1.
Example: [-1 1 -1 1 1]

Length — Length of path segment
positive scalar

This property is read-only.

Length of the path segment, in world units, specified as a positive scalar.

References
[1] Reeds, J. A., and L. A. Shepp. "Optimal Paths for a Car That Goes Both Forwards and

Backwards." Pacific Journal of Mathematics. Vol. 145, Number 2, 1990, pp. 367–
393.

See Also
Objects
driving.DubinsPathSegment | driving.Path | pathPlannerRRT

Topics
“Automated Parking Valet”

4 Objects in Automated Driving System Toolbox

4-570

Introduced in R2018b

 driving.ReedsSheppPathSegment

4-571

pathPlannerRRT
Configure RRT* path planner

Description
The pathPlannerRRT object configures a vehicle path planner based on the optimal
rapidly exploring random tree (RRT*) algorithm. An RRT* path planner explores the
environment around the vehicle by constructing a tree of random collision-free poses.

Once the pathPlannerRRT object is configured, use the plan function to plan a path
from the start pose to the goal.

Creation

Syntax
planner = pathPlannerRRT(costmap)
planner = pathPlannerRRT(costmap,Name,Value)

Description
planner = pathPlannerRRT(costmap) returns a pathPlannerRRT object for
planning a vehicle path. costmap is a vehicleCostmap object specifying the
environment around the vehicle. costmap sets the Costmap property value.

planner = pathPlannerRRT(costmap,Name,Value) sets properties of the path
planner by using one or more name-value pair arguments. For example,
pathPlanner(costmap,'GoalBias',0.5) sets the GoalBias property to a
probability of 0.5. Enclose each property name in quotes.

4 Objects in Automated Driving System Toolbox

4-572

Properties
Costmap — Costmap of vehicle environment
vehicleCostmap object

Costmap of the vehicle environment, specified as a vehicleCostmap object. The
costmap is used for collision checking of the randomly generated poses. Specify this
costmap when creating your pathPlannerRRT object using the costmap input.

GoalTolerance — Tolerance around goal pose
[0.5 0.5 5] (default) | [xTol, yTol, ΘTol] vector

Tolerance around the goal pose, specified as an [xTol, yTol, ΘTol] vector. The path planner
finishes planning when the vehicle reaches the goal pose within these tolerances for the
(x, y) position and the orientation angle, Θ. The xTol and yTol values are in the same world
units as the vehicleCostmap. ΘTol is in degrees.

GoalBias — Probability of selecting goal pose
0.1 (default) | scalar in the range [0, 1]

Probability of selecting the goal pose instead of a random pose, specified as a scalar in
the range [0, 1]. Large values accelerate reaching the goal at the risk of failing to
circumnavigate obstacles.

ConnectionMethod — Method used to connect poses
'Dubins' (default) | 'Reeds-Shepp'

Method used to calculate the connection between consecutive poses, specified as
'Dubins' or 'Reeds-Shepp'. Use 'Dubins' if only forward motions are allowed.

The 'Dubins' method contains a sequence of three primitive motions, each of which is
one of these types:

• Straight (forward)
• Left turn at the maximum steering angle of the vehicle (forward)
• Right turn at the maximum steering angle of the vehicle (forward)

If you use this connection method, then the segments of the planned vehicle path are
stored as an array of driving.DubinsPathSegment objects.

The 'Reeds-Shepp' method contains a sequence of three to five primitive motions, each
of which is one of these types:

 pathPlannerRRT

4-573

• Straight (forward or reverse)
• Left turn at the maximum steering angle of the vehicle (forward or reverse)
• Right turn at the maximum steering angle of the vehicle (forward or reverse)

If you use this connection method, then the segments of the planned vehicle path are
stored as an array of driving.ReedsSheppPathSegment objects.

The MinTurningRadius property determines the maximum steering angle.

ConnectionDistance — Maximum distance between poses
5 (default) | positive scalar

Maximum distance between two connected poses, specified as a positive scalar.
pathPlannerRRT computes the connection distance along the path between the two
poses, with turns included. Larger values result in longer path segments between poses.

MinTurningRadius — Minimum turning radius of vehicle
4 (default) | positive scalar

Minimum turning radius of the vehicle, specified as a positive scalar. This value
corresponds to the radius of the turning circle at the maximum steering angle. Larger
values limit the maximum steering angle for the path planner, and smaller values result in
sharper turns. The default value is calculated using a wheelbase of 2.8 meters with a
maximum steering angle of 35 degrees.

MinIterations — Minimum number of planner iterations
100 (default) | positive integer

Minimum number of planner iterations for exploring the costmap, specified as a positive
integer. Increasing this value increases the sampling of alternative paths in the costmap.

MaxIterations — Maximum number of planner iterations
10000 (default) | positive integer

Maximum number of planner iterations for exploring the costmap, specified as a positive
integer. Increasing this value increases the number of samples for finding a valid path. If
a valid path is not found, the path planner exits after exceeding this maximum.

ApproximateSearch — Enable approximate nearest neighbor search
true (default) | false

4 Objects in Automated Driving System Toolbox

4-574

Enable approximate nearest neighbor search, specified as true or false. Set this value
to true to use a faster, but approximate, search algorithm. Set this value to false to use
an exact search algorithm at the cost of increased computation time.

Object Functions
plan Plan vehicle path using RRT* path planner
plot Plot path planned by RRT* path planner

Examples

Plan Path to Parking Spot

Plan a vehicle path to a parking spot by using the RRT* algorithm.

Load a costmap of a parking lot. Plot the costmap to see the parking lot and inflated areas
for the vehicle to avoid.

data = load('parkingLotCostmapReducedInflation.mat');
costmap = data.parkingLotCostmapReducedInflation;
plot(costmap)

 pathPlannerRRT

4-575

Define start and goal poses for the path planner as [x, y, Θ] vectors. World units for the
(x,y) locations are in meters. World units for the Θ orientation values are in degrees.

startPose = [11, 10, 0]; % [meters, meters, degrees]
goalPose = [31.5, 17, 90];

Create an RRT* path planner to plan a path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);

Plot the planned path.

plot(planner)

4 Objects in Automated Driving System Toolbox

4-576

Plan Path and Check Its Validity

Plan a vehicle path through a parking lot by using the optimal rapidly exploring random
tree (RRT*) algorithm. Check that the path is valid, and then plot the transition poses
along the path.

Load a costmap of a parking lot. Plot the costmap to see the parking lot and inflated areas
for the vehicle to avoid.

data = load('parkingLotCostmap.mat');
costmap = data.parkingLotCostmap;
plot(costmap)

 pathPlannerRRT

4-577

Define start and goal poses for the vehicle as [x, y, Θ] vectors. World units for the (x,y)
locations are in meters. World units for the Θ orientation angles are in degrees.

startPose = [4, 4, 90]; % [meters, meters, degrees]
goalPose = [30, 13, 0];

Use a pathPlannerRRT object to plan a path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);

Check that the path is valid.

isPathValid = checkPathValidity(refPath,costmap)

4 Objects in Automated Driving System Toolbox

4-578

isPathValid = logical
 1

Interpolate the transition poses along the path.

transitionPoses = interpolate(refPath);

Plot the planned path and the transition poses on the costmap.

hold on
plot(refPath,'DisplayName','Planned Path')
scatter(transitionPoses(:,1),transitionPoses(:,2),[],'filled', ...
 'DisplayName','Transition Poses')
hold off

 pathPlannerRRT

4-579

Tips
• Updating any of the properties of the planner clears the planned path from

pathPlannerRRT. Calling plot displays only the costmap until a path is planned
using plan.

• To improve performance, the pathPlannerRRT object uses an approximate nearest
neighbor search. This search technique checks only sqrt(N) nodes, where N is the
number of nodes to search. To use exact nearest neighbor search, set the
ApproximateSearch property to false.

• The Dubins and Reeds-Shepp connection methods are assumed to be kinematically
feasible and ignore inertial effects. These methods make the path planner suitable for
low velocity environments, where inertial effects of wheel forces are small.

References
[1] Karaman, Sertac, and Emilio Frazzoli. "Optimal Kinodynamic Motion Planning Using

Incremental Sampling-Based Methods." 49th IEEE Conference on Decision and
Control (CDC). 2010.

[2] Shkel, Andrei M., and Vladimir Lumelsky. "Classification of the Dubins Set." Robotics
and Autonomous Systems. Vol. 34, Number 4, 2001, pp. 179–202.

[3] Reeds, J. A., and L. A. Shepp. "Optimal paths for a car that goes both forwards and
backwards." Pacific Journal of Mathematics. Vol. 145, Number 2, 1990, pp. 367–
393.

See Also
Functions
checkPathValidity | lateralControllerStanley | plan | plot

Blocks
Lateral Controller Stanley

Objects
driving.Path | vehicleCostmap

4 Objects in Automated Driving System Toolbox

4-580

Topics
“Automated Parking Valet”

Introduced in R2018a

 pathPlannerRRT

4-581

plan
Plan vehicle path using RRT* path planner

Syntax
refPath = plan(planner,startPose,goalPose)
[refPath,tree] = plan(planner,startPose,goalPose)

Description
refPath = plan(planner,startPose,goalPose) plans a vehicle path from
startPose to goalPose using the input pathPlannerRRT object. This object configures
an optimal rapidly exploring random tree (RRT*) path planner.

[refPath,tree] = plan(planner,startPose,goalPose) also returns the
exploration tree, tree.

Examples

Plan Path to Parking Spot

Plan a vehicle path to a parking spot by using the RRT* algorithm.

Load a costmap of a parking lot. Plot the costmap to see the parking lot and inflated areas
for the vehicle to avoid.

data = load('parkingLotCostmapReducedInflation.mat');
costmap = data.parkingLotCostmapReducedInflation;
plot(costmap)

4 Objects in Automated Driving System Toolbox

4-582

Define start and goal poses for the path planner as [x, y, Θ] vectors. World units for the
(x,y) locations are in meters. World units for the Θ orientation values are in degrees.

startPose = [11, 10, 0]; % [meters, meters, degrees]
goalPose = [31.5, 17, 90];

Create an RRT* path planner to plan a path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);

Plot the planned path.

plot(planner)

 plan

4-583

Input Arguments
planner — RRT* path planner
pathPlannerRRT object

RRT* path planner, specified as a pathPlannerRRT object.

startPose — Initial pose of vehicle
[x, y, Θ] vector

Initial pose of the vehicle, specified as an [x, y, Θ] vector. x and y are in world units, such
as meters. Θ is in degrees.

4 Objects in Automated Driving System Toolbox

4-584

goalPose — Goal pose of vehicle
[x, y, Θ] vector

Goal pose of the vehicle, specified as an [x, y, Θ] vector. x and y are in world units, such as
meters. Θ is in degrees.

The vehicle achieves its goal pose when the last pose in the path is within the
GoalTolerance property of planner.

Output Arguments
refPath — Planned vehicle path
driving.Path object

Planned vehicle path, returned as a driving.Path object containing reference poses
along the planned path. If planning was unsuccessful, the path has no poses. To check if
the path is still valid due to costmap updates, use the checkPathValidity function.

tree — Exploration tree
digraph object

Exploration tree, returned as a digraph object. Nodes within tree represent explored
vehicle poses. Edges within tree represent the distance between connected nodes.

See Also
Functions
checkPathValidity | plot

Objects
digraph | driving.Path | pathPlannerRRT | vehicleCostmap

Topics
“Automated Parking Valet”

Introduced in R2018a

 plan

4-585

plot
Plot path planned by RRT* path planner

Syntax
plot(planner)
plot(planner,Name,Value)

Description
plot(planner) plots the path planned by the input pathPlannerRRT object. When
specified as an input to the plan function, this object plans a path using the rapidly
exploring random tree (RRT*) algorithm. If a path has not been planned using plan, or if
properties of the pathPlannerRRT planner have changed since using plan, then plot
displays only the costmap of planner.

plot(planner,Name,Value) specifies options using one or more name-value pair
arguments. For example, plot(planner,'Tree','on') plots the poses explored by the
RRT* path planner.

Examples

Plan Path to Parking Spot

Plan a vehicle path to a parking spot by using the RRT* algorithm.

Load a costmap of a parking lot. Plot the costmap to see the parking lot and inflated areas
for the vehicle to avoid.

data = load('parkingLotCostmapReducedInflation.mat');
costmap = data.parkingLotCostmapReducedInflation;
plot(costmap)

4 Objects in Automated Driving System Toolbox

4-586

Define start and goal poses for the path planner as [x, y, Θ] vectors. World units for the
(x,y) locations are in meters. World units for the Θ orientation values are in degrees.

startPose = [11, 10, 0]; % [meters, meters, degrees]
goalPose = [31.5, 17, 90];

Create an RRT* path planner to plan a path from the start pose to the goal pose.

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);

Plot the planned path.

plot(planner)

 plot

4-587

Input Arguments
planner — RRT* path planner
pathPlannerRRT object

RRT* path planner, specified as a pathPlannerRRT object.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

4 Objects in Automated Driving System Toolbox

4-588

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Vehicle','off'

Parent — Axes object
axes object

Axes object in which to draw the plot, specified as the comma-separated pair consisting of
'Parent' and an axes object. If you do not specify Parent, a new figure is created.

Tree — Display exploration tree
'off' (default) | 'on'

Display exploration tree, specified as the comma-separated pair consisting of 'Tree' and
'off' or 'on'. Setting this value to 'on' displays the poses explored by the RRT* path
planner, planner.

Vehicle — Display vehicle
'on' (default) | 'off'

Display vehicle, specified as the comma-separated pair consisting of 'Vehicle' and
'on' or 'off'. Setting this value to 'off' disables the vehicle displayed along the path
planned by the RRT* path planner, planner.

See Also
Functions
checkPathValidity | plan

Objects
driving.Path | pathPlannerRRT | vehicleCostmap

Topics
“Automated Parking Valet”

Introduced in R2018a

 plot

4-589

lanespec class
Create road lane specifications

Description
The lanespec object defines road lane specifications used in the road method of the
drivingScenario class.

Construction
lnspec = lanespec(numlanes) returns lane specifications for a road having
numlanes lanes. All other properties take default values.

lnspec = lanespec(numlanes,Name,Value) returns lane specifications for a road
having numlanes lanes. You can specify additional options using one or more
Name,Value pair arguments. Name can also be a property name and Value is the
corresponding value. Name must appear inside single quotes (''). You can specify several
name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Input Arguments
numlanes — Number of lanes in road
positive integer | positive integer-valued 1-by-2 vector (NL,NR)

Number of lanes in the road, specified as a positive integer or a vector of positive integers
of the form [NL,NR]. When numlanes is a scalar, all lanes flow in the same direction.
When numlanes is a vector, the first entry is the number of lanes to the left and the
number of lanes to the right. The total number of lanes is the sum, N = NL + NR. For the
definitions of left and right, see “Meaning of Left and Right” on page 4-593.
Example: [2 2]
Data Types: double

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

4 Objects in Automated Driving System Toolbox

4-590

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Width',[3.5,3.7,3.7,3.5]

Width — Lane widths
3.6 (default) | positive scalar | 1-by-N vector of positive values

Lane widths, specified as a positive scalar or 1-by-N vector of positive values. N is the
number of lanes defined by numlanes.

When Width is a scalar, the same value is applied to all lanes. When Width is a vector,
the vector elements apply to lanes from left to right. Units are in meters.
Example: [3.5 3.7 3.7 3.5]
Data Types: double

Marking — Lane marking
lane marking object (default) | 1-by-M array of lane marking objects

Lane markings, specified as a laneMarking object or a 1-by-M array of laneMarking
objects N lanes have M = N + 1 lane markings.

By default, for a one way road, the color of the lane marking of the leftmost lane is yellow.
For two way roads, the color of the dividing lane marker is yellow.

Outputs
lnspec — Lane specification
lane specification object

Lane specification, returned as a lanespec lane specification object with these
properties.

NumLanes –- The number of lanes specified by the numlanes argument.
Width –- The lane widths specified by the 'Width' Name,Value pair.
Marking –- Lane markings specified by the 'Marking' Name,Value pair.

 lanespec class

4-591

Limitations
• Lane markings in intersections are not supported.
• The number of lanes for a road is fixed. You cannot change lane specifications for a

road during a simulation. There can only be one specification for a road.

Definitions

Lane Markings
This figure illustrates the lane marking geometric properties:

This figure illustrates the types of lane markings used in driving scenarios:

4 Objects in Automated Driving System Toolbox

4-592

Lane Boundary Markings

Solid Dashed DoubleSoli
d

DashedSoli
d

SolidDashe
d

DoubleDash
ed

Meaning of Left and Right
Left and right are defined with respect to the road centers specified by the matrix of
roadCenters input to the road method. The road centers create a directed line starting
from the first row to the last row of the matrix. Left and right mean left and right of the
directed line. The width of the road is the sum of all lane widths plus half the widths of
the left-edge and right-edge boundary markings.

Examples

Create Straight Four-Lane Road

Construct a straight road with two lanes in each direction.

Create a lanespec object from lane marking objects. A four-lane road has five lane
markings. The center line is a double-yellow line. The outermost lines are solid white lines
while the inner lines are dashed.

sc = drivingScenario;
roadCenters = [0 0; 80 0];
solid_w = laneMarking('Solid','Width',0.3);
dash_w = laneMarking('Dashed','Space',5);

 lanespec class

4-593

double_y = laneMarking('DoubleSolid','Color','yellow');
lspec = lanespec([2 2],'Width',[5,5,5,5],'Marking',[solid_w,dash_w,double_y,dash_w,solid_w]);

Display the road.

road(sc,roadCenters,'Lanes',lspec);
plot(sc)

Simulate Car Traveling on S-Curve

Simulate a driving scenario with one car traveling through an S-curve. Create and plot
the lane boundaries.

4 Objects in Automated Driving System Toolbox

4-594

Create the scenario with one road having an S-curve.

sc = drivingScenario('StopTime',3);
roadCenters = [-35 20 0; -20 -20 0; 0 0 0; 20 20 0; 35 -20 0];

Create the lanes and add them to the road.

lm = [laneMarking('Solid','Color','w'); ...
 laneMarking('Dashed','Color','y'); ...
 laneMarking('Dashed','Color','y'); ...
 laneMarking('Solid','Color','w')];
ls = lanespec(3,'Marking',lm);
road(sc, roadCenters,'Lanes',ls);

Add an ego car and specify its trajectory from its speed and waypoints. The car travels at
30 m/s.

car = vehicle(sc, ...
 'ClassID', 1, ...
 'Position', [-35 20 0]);
waypoints = [-35 20 0; -20 -20 0; 0 0 0; 20 20 0; 35 -20 0];
speed = 30;
trajectory(car,waypoints,speed);

Plot the scenario and corresponding chase plot.

plot(sc)

 lanespec class

4-595

chasePlot(car)

4 Objects in Automated Driving System Toolbox

4-596

Run the simulation loop.

1 Initialize a bird's-eye plot and create an outline plotter, left-lane and right-lane
boundary plotters, and a road boundary plotter.

2 Obtain the road boundaries and rectangular outlines.
3 Obtain the lane boundaries to the left and right of the vehicle.
4 Advance the simulation and update the plotters.

bep = birdsEyePlot('XLim',[-40 40],'YLim',[-30 30]);
olPlotter = outlinePlotter(bep);
lblPlotter = laneBoundaryPlotter(bep,'Color','r','LineStyle','-');
lbrPlotter = laneBoundaryPlotter(bep,'Color','g','LineStyle','-');
rbsEdgePlotter = laneBoundaryPlotter(bep);

 lanespec class

4-597

legend('off');
while advance(sc)
 rbs = roadBoundaries(car);
 [position, yaw, length, width, originOffset, color] = targetOutlines(car);
 lb = laneBoundaries(car,'XDistance',0:5:30,'LocationType','Center', ...
 'AllBoundaries',false);
 plotLaneBoundary(rbsEdgePlotter,rbs)
 plotLaneBoundary(lblPlotter,{lb(1).Coordinates})
 plotLaneBoundary(lbrPlotter,{lb(2).Coordinates})
 plotOutline(olPlotter, position, yaw, length, width, ...
 'OriginOffset', originOffset, 'Color', color)
end

4 Objects in Automated Driving System Toolbox

4-598

 lanespec class

4-599

See Also
drivingScenario | laneMarking | road

Introduced in R2018a

4 Objects in Automated Driving System Toolbox

4-600

laneMarking class

Create road lane marking object

Description
The laneMarking class specifies the properties of lane markings which define the lane
boundary lines on roads. You can use lane marking objects as input to the lanespec
object when creating roads.

Construction
lanemarking = laneMarking(Type) returns a lane marking object, lanemarking,
with default properties for the lane boundary type, Type.

lanemarking = laneMarking(Type,Name,Value) returns a lane marking object,
lanemarking, with properties specified by one or more Name,Value pair arguments.
Name must appear inside single quotes (''). You can specify several name-value pair
arguments in any order as Name1,Value1,...,NameN,ValueN.

Output Arguments
lanemarking — Lane marking
laneMarking object

Lane marking, returned as a laneMarking object. A laneMarking object defines the
characteristics of a lane boundary marker on a road.

Properties
Type — Type of lane boundary marker
'Unmarked' | 'Solid' | 'Dashed' | 'DoubleSolid' | 'DoubleDashed' |
'SolidDashed' | 'DashedSolid'

 laneMarking class

4-601

Lane boundary type, specified as one of the LaneBoundaryType enumerations:
'Unmarked', 'Solid', 'Dashed', 'DoubleSolid', 'DoubleDashed',
'SolidDashed', or 'DashedSolid'. The lane boundary markers correspond to
different types of lines painted on a road.
Example: 'DoubleSolid'
Data Types: char | string

Width — Lane marking widths
0.15 (default) | positive scalar

Lane marking widths, specified as a positive scalar. For a double lane marker, the same
width is used for both lines. Units are in meters.
Example: 0.20
Data Types: double

Color — Boundary line color
[1 1 1] (white) (default) | MATLAB color string | [r g b] vector

Boundary line color, specified as a MATLAB color string or as an [r g b] vector. For a
double lane marker, the same color is used for both lines.
Example: [.8 .8 .8]
Data Types: double | char | string

Strength — Visibility of lane marking
1 (default) | positive scalar from 0 to 1

Visibility of lane marking, specified as a scalar from 0 through 1. A value of 0 corresponds
to a marking that is not visible and a value of 1 corresponds to a marking that is
completely visible. Values in between are partially visible. For a double lane marker, the
same strength is used for both lines.
Example: 0.20
Data Types: double

Length — Length of dash in dashed lines
3.0 (default) | positive scalar

4 Objects in Automated Driving System Toolbox

4-602

Length of dash in dashed lines, specified as a positive scalar. For a double lane marker,
the same length is used for both lines. The dash is the visible part of a dashed line. Units
are in meters.
Example: 2.0
Data Types: double

Space — Length of space between dashes in dashed lines
9.0 (default) | positive scalar

Length of space between the end of a dash in a dashed line and beginning of the next
dash, specified as a positive scalar. For a double lane marker, the same length is used for
both lines. Units are in meters.
Example: 2.0
Data Types: double

Limitations
• Lane markings in intersections are not supported.
• The number of lanes for a road is fixed. You cannot change lane specifications for a

road during a simulation. There can only be one specification for a road.

Definitions

Lane Markings
This figure illustrates the lane marking geometric properties:

 laneMarking class

4-603

This figure illustrates the types of lane markings used in driving scenarios:

Lane Boundary Markings

Solid Dashed DoubleSoli
d

DashedSoli
d

SolidDashe
d

DoubleDash
ed

4 Objects in Automated Driving System Toolbox

4-604

Examples

Create Straight Four-Lane Road

Construct a straight road with two lanes in each direction.

Create a lanespec object from lane marking objects. A four-lane road has five lane
markings. The center line is a double-yellow line. The outermost lines are solid white lines
while the inner lines are dashed.

sc = drivingScenario;
roadCenters = [0 0; 80 0];
solid_w = laneMarking('Solid','Width',0.3);
dash_w = laneMarking('Dashed','Space',5);
double_y = laneMarking('DoubleSolid','Color','yellow');
lspec = lanespec([2 2],'Width',[5,5,5,5],'Marking',[solid_w,dash_w,double_y,dash_w,solid_w]);

Display the road.

road(sc,roadCenters,'Lanes',lspec);
plot(sc)

 laneMarking class

4-605

Simulate Car Traveling on S-Curve

Simulate a driving scenario with one car traveling through an S-curve. Create and plot
the lane boundaries.

Create the scenario with one road having an S-curve.

sc = drivingScenario('StopTime',3);
roadCenters = [-35 20 0; -20 -20 0; 0 0 0; 20 20 0; 35 -20 0];

Create the lanes and add them to the road.

4 Objects in Automated Driving System Toolbox

4-606

lm = [laneMarking('Solid','Color','w'); ...
 laneMarking('Dashed','Color','y'); ...
 laneMarking('Dashed','Color','y'); ...
 laneMarking('Solid','Color','w')];
ls = lanespec(3,'Marking',lm);
road(sc, roadCenters,'Lanes',ls);

Add an ego car and specify its trajectory from its speed and waypoints. The car travels at
30 m/s.

car = vehicle(sc, ...
 'ClassID', 1, ...
 'Position', [-35 20 0]);
waypoints = [-35 20 0; -20 -20 0; 0 0 0; 20 20 0; 35 -20 0];
speed = 30;
trajectory(car,waypoints,speed);

Plot the scenario and corresponding chase plot.

plot(sc)

 laneMarking class

4-607

chasePlot(car)

4 Objects in Automated Driving System Toolbox

4-608

Run the simulation loop.

1 Initialize a bird's-eye plot and create an outline plotter, left-lane and right-lane
boundary plotters, and a road boundary plotter.

2 Obtain the road boundaries and rectangular outlines.
3 Obtain the lane boundaries to the left and right of the vehicle.
4 Advance the simulation and update the plotters.

bep = birdsEyePlot('XLim',[-40 40],'YLim',[-30 30]);
olPlotter = outlinePlotter(bep);
lblPlotter = laneBoundaryPlotter(bep,'Color','r','LineStyle','-');
lbrPlotter = laneBoundaryPlotter(bep,'Color','g','LineStyle','-');
rbsEdgePlotter = laneBoundaryPlotter(bep);

 laneMarking class

4-609

legend('off');
while advance(sc)
 rbs = roadBoundaries(car);
 [position, yaw, length, width, originOffset, color] = targetOutlines(car);
 lb = laneBoundaries(car,'XDistance',0:5:30,'LocationType','Center', ...
 'AllBoundaries',false);
 plotLaneBoundary(rbsEdgePlotter,rbs)
 plotLaneBoundary(lblPlotter,{lb(1).Coordinates})
 plotLaneBoundary(lbrPlotter,{lb(2).Coordinates})
 plotOutline(olPlotter, position, yaw, length, width, ...
 'OriginOffset', originOffset, 'Color', color)
end

4 Objects in Automated Driving System Toolbox

4-610

 laneMarking class

4-611

See Also
drivingScenario | lanespec | road

Introduced in R2018a

4 Objects in Automated Driving System Toolbox

4-612

laneMarkingVertices
Class: drivingScenario

Lane marking vertices and faces

Syntax
[lmv,lmf] = laneMarkingVertices(sc)
[lmv,lmf] = laneMarkingVertices(ac)

Description
[lmv,lmf] = laneMarkingVertices(sc) returns lane marking vertices, lmv, and
lane marking faces, lmf, in driving scenario, sc, coordinates. Use lane marking vertices
and faces to display lane markings in laneMarkingPlotter.

[lmv,lmf] = laneMarkingVertices(ac) returns lane marking vertices, lmv, and
lane marking faces, lmf, in the coordinates of the actor, ac.

Input Arguments
sc — Driving scenario
drivingScenario object

Driving scenario, specified as a drivingScenario object.
Example: sc = drivingScenario

ac — Scenario actor
Actor object | Vehicle object

Scenario actor, specified as an Actor or Vehicle object. To create actors, use the actor
or vehicle method.

 laneMarkingVertices

4-613

Output Arguments
lmv — Lane marking vertices
real-valued matrix

Lane marking vertices, returned as a real-valued matrix. Each row of the matrix
represents the x-, y-, and z- coordinates of a vertex. Lane marking vertices are defined in
patch.

lmf — Lane marking faces
real-valued matrix

Lane marking faces, returned as a real-valued matrix. Each row of the matrix is a face
that defines the connection between vertices for one lane marking. Lane marking faces
are defined in patch.

Examples

Plot Lane Markings in Car and Pedestrian Scenario

Construct a driving scenario containing a car and pedestrian on a straight road. Then,
create and display lane markings in a bird's-eye plot.

Create an empty driving scenario.

sc = drivingScenario;

Construct a straight road segment 25 m in length with two travel lanes in one direction.

lm = [laneMarking('Solid')
 laneMarking('Dashed','Length',2,'Space',4)
 laneMarking('Solid')];
l = lanespec(2,'Marking',lm);
road(sc, [0 0 0; 25 0 0],'Lanes',l);

Add a pedestrian crossing the road at 1 m/s and a car following the road at 10 m/s.

ped = actor(sc, 'Length', 0.2, 'Width', 0.4, 'Height', 1.7);
car = vehicle(sc);
trajectory(ped,[15 -3 0; 15 3 0], 1);
trajectory(car,[car.RearOverhang 0 0; 25-car.Length+car.RearOverhang 0 0], 10);

4 Objects in Automated Driving System Toolbox

4-614

Display the scenario and corresponding chase plot.

plot(sc)

chasePlot(car)

 laneMarkingVertices

4-615

Run the simulation.

• Create the bird's eye plot and add an outline plotter, a lane boundary plotter and lane
marking plotter.

• Get the road boundaries and target outlines.
• Get lane marking vertices and faces.
• Plot the boundaries and lane markers.
• Run the simulation loop.

bep = birdsEyePlot('XLim',[-25 25],'YLim',[-10 10]);
olPlotter = outlinePlotter(bep);
lbPlotter = laneBoundaryPlotter(bep);

4 Objects in Automated Driving System Toolbox

4-616

lmPlotter = laneMarkingPlotter(bep,'DisplayName','Lanes');
legend('off');
while advance(sc)
 rb = roadBoundaries(car);
 [position, yaw, length, width, originOffset, color] = targetOutlines(car);
 [lmv, lmf] = laneMarkingVertices(car);
 plotLaneBoundary(lbPlotter, rb);
 plotLaneMarking(lmPlotter, lmv, lmf);
 plotOutline(olPlotter, position, yaw, length, width, ...
 'OriginOffset', originOffset, 'Color', color);
end

 laneMarkingVertices

4-617

4 Objects in Automated Driving System Toolbox

4-618

See Also
patch | laneMarking | laneMarkingPlotter | plotLaneMarking

Introduced in R2018a

 laneMarkingVertices

4-619

laneBoundaries
Lane boundaries

Syntax
lbdry = laneBoundaries(ac)
lbdry = laneBoundaries(ac,Name,Value)

Description
lbdry = laneBoundaries(ac) returns the lane boundaries, lbdry, defined with
respect to coordinates of the ego actor, ac.

lbdry = laneBoundaries(ac,Name,Value) specifies additional options using one or
more Name,Value pair arguments. Name must appear inside single quotes (''). You can
specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Examples

Simulate Car Traveling on S-Curve

Simulate a driving scenario with one car traveling through an S-curve. Create and plot
the lane boundaries.

Create the scenario with one road having an S-curve.

sc = drivingScenario('StopTime',3);
roadCenters = [-35 20 0; -20 -20 0; 0 0 0; 20 20 0; 35 -20 0];

Create the lanes and add them to the road.

lm = [laneMarking('Solid','Color','w'); ...
 laneMarking('Dashed','Color','y'); ...

4 Objects in Automated Driving System Toolbox

4-620

 laneMarking('Dashed','Color','y'); ...
 laneMarking('Solid','Color','w')];
ls = lanespec(3,'Marking',lm);
road(sc, roadCenters,'Lanes',ls);

Add an ego car and specify its trajectory from its speed and waypoints. The car travels at
30 m/s.

car = vehicle(sc, ...
 'ClassID', 1, ...
 'Position', [-35 20 0]);
waypoints = [-35 20 0; -20 -20 0; 0 0 0; 20 20 0; 35 -20 0];
speed = 30;
trajectory(car,waypoints,speed);

Plot the scenario and corresponding chase plot.

plot(sc)

 laneBoundaries

4-621

chasePlot(car)

4 Objects in Automated Driving System Toolbox

4-622

Run the simulation loop.

1 Initialize a bird's-eye plot and create an outline plotter, left-lane and right-lane
boundary plotters, and a road boundary plotter.

2 Obtain the road boundaries and rectangular outlines.
3 Obtain the lane boundaries to the left and right of the vehicle.
4 Advance the simulation and update the plotters.

bep = birdsEyePlot('XLim',[-40 40],'YLim',[-30 30]);
olPlotter = outlinePlotter(bep);
lblPlotter = laneBoundaryPlotter(bep,'Color','r','LineStyle','-');
lbrPlotter = laneBoundaryPlotter(bep,'Color','g','LineStyle','-');
rbsEdgePlotter = laneBoundaryPlotter(bep);

 laneBoundaries

4-623

legend('off');
while advance(sc)
 rbs = roadBoundaries(car);
 [position, yaw, length, width, originOffset, color] = targetOutlines(car);
 lb = laneBoundaries(car,'XDistance',0:5:30,'LocationType','Center', ...
 'AllBoundaries',false);
 plotLaneBoundary(rbsEdgePlotter,rbs)
 plotLaneBoundary(lblPlotter,{lb(1).Coordinates})
 plotLaneBoundary(lbrPlotter,{lb(2).Coordinates})
 plotOutline(olPlotter, position, yaw, length, width, ...
 'OriginOffset', originOffset, 'Color', color)
end

4 Objects in Automated Driving System Toolbox

4-624

 laneBoundaries

4-625

Input Arguments
ac — Scenario actor
Actor object | Vehicle object

Scenario actor, specified as an Actor or Vehicle object. To create actors, use the actor
or vehicle method.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

4 Objects in Automated Driving System Toolbox

4-626

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'LocationType','center'

XDistance — Distances ahead of ego actor
0 (default) | N-element real-valued vector

Distances ahead of the ego actor position along the road at which to determine the lane
boundaries, specified as an N-element real-valued vector.
Example: 1:0.1:10
Data Types: double

LocationType — Lane boundary location
'Center' (default) | 'Inner'

Lane boundary location, specified as 'Center' or 'Inner'. For 'Center', returned
boundaries are centered on the lane markings. For 'Inner', boundaries are placed at
the inner edges of the lane markings.

Consider a three-lane road with four lane markings. Two lane markings are at the road
edges. The other two lane markings divide the road into its three lanes.

• When LocationType is 'Center', the road has four lane boundaries, with one
boundary per lane marking.

• When LocationType is 'Inner', the road has six lane boundaries, with two
boundaries for each of the three lanes.

The following figure illustrates the two types of lane boundary locations.

Example: 'Inner'

 laneBoundaries

4-627

Data Types: char | string

AllBoundaries — Return lane boundary locations
false (default) | true

Return all lane boundary locations, specified as false or true. Lane boundaries are
returned from left to right relative to the ego vehicle. When false, only the left and right
lane boundaries next to the ego vehicle are returned.
Data Types: logical

Output Arguments
lbdry — Lane boundaries
array of structures

Lane boundaries, returned as an array of lane boundary structure fields defined in the
table.

4 Objects in Automated Driving System Toolbox

4-628

Lane Boundary Structure Fields

Field Description
Coordinates Lane boundary coordinates, specified as a

real-valued N-by-3 matrix. Lane boundary
coordinates define the position of points on
the boundary at distances specified by
XDistance. In addition, a set of boundary
coordinates are inserted into the matrix at
zero distance. Units are in meters.

Curvature Lane boundary curvature at each row of the
Coordinates matrix, specified as a real-
valued N-by-1 vector. N is the number of
rows in the Coordinates matrix. Units are
in degrees/m.

CurvatureDerivative Derivative of lane boundary curvature at
each row of the Coordinates matrix,
specified as a real-valued N-by-1 vector. N
is the number of rows in the Coordinates
matrix. Units are in degrees/m. Units are in
degrees/m2.

HeadingAngle Initial lane boundary heading, specified as a
scalar. The heading angle of the lane
boundary is relative to the ego car heading.
Units are in degrees.

LateralOffset Distance of the lane boundary from the ego
vehicle position, specified as a scalar. An
offset to a lane boundary to the left of the
ego is positive. An offset to the right of the
ego vehicle is negative. Units are in meters.

 laneBoundaries

4-629

BoundaryType Type of lane boundary marking, specified as
one of the following:

• 'Unmarked' — No physical lane marker
exists

• 'Solid' — Single unbroken line
• 'Dashed' — Single line of dashed lane

markers
• 'DoubleSolid' — two unbroken lines
• 'DoubleDashed' — Two dashed lines
• 'SolidDashed' — Solid line on the left

and a dashed line on the right
• 'DashedSolid' — Dashed line on the

left and a solid line on the right
Strength Strength of the lane boundary marking,

specified as a scalar from 0 through 1. A
value of 0 corresponds to a marking that is
not visible and a value of 1 corresponds to a
marking that is completely visible. Values in
between are partially visible.

Width Lane boundary width, specified as a
positive scalar. In a double-line lane marker,
the same width is used for both lines and
the space between lines. Units are in
meters.

Length Length of dash in dashed lines, specified as
a positive scalar. In a double-line lane
marker, the same length is used for both
lines.

Space Length of space between dashes in dashed
lines, specified as a positive scalar. In a
dashed double-line lane marker the same
space is used for both lines

4 Objects in Automated Driving System Toolbox

4-630

See Also
drivingScenario | laneBoundaryPlotter | laneMarking | laneMarkingPlotter |
lanespec | plotLaneBoundary | plotLaneMarking | road

Introduced in R2018a

 laneBoundaries

4-631

clothoidLaneBoundary class

Clothoid-shaped lane boundary model

Description
clothoidLaneBoundary defines an object containing a clothoid lane boundary model. A
clothoid is a type of curve whose rate of change of curvature varies linearly with distance.

Construction
bdry = clothoidLaneBoundary creates a clothoid lane boundary object, bdry.

Outputs
bdry — Lane boundary
clothoidLaneBoundary object

Lane boundary, returned as a clothoidLaneBoundary object.

Properties
Curvature — Lane boundary curvature
0 (default) | scalar

Lane boundary curvature, specified as a scalar. This property represents the rate of
change of lane boundary direction with respect to distance. Units are in degrees/m.
Example: -0.1
Data Types: single | double

CurvatureDerivative — Derivative of lane boundary curvature
0 (default) | scalar

4 Objects in Automated Driving System Toolbox

4-632

Derivative of lane boundary curvature, specified as a scalar. This property represents the
rate of change of lane curvature with respect to distance. Units are in degrees/m2.
Example: 0.01
Data Types: single | double

CurvatureLength — Length of lane boundary along road
0 (default) | positive scalar

Length of the lane boundary along the road, specified as a positive scalar. Units are in
meters.
Example: 25
Data Types: single | double

HeadingAngle — Initial lane boundary heading
0 (default) | scalar

Initial lane boundary heading, specified as a scalar. The heading angle of the lane
boundary is relative to the ego car heading. Units are in degrees.
Example: 10
Data Types: single | double

LateralOffset — Distance of lane boundary
0 (default) | real-valued vector

Distance of the lane boundary from the ego vehicle position, specified as a scalar. A lane
boundary offset to the left of the ego is vehicle is positive. An offset to the right of the ego
vehicle is negative. Units are in meters.
Example: -1.2
Data Types: single | double

BoundaryType — Type of lane boundary
'Unmarked' (default) | 'Solid' | 'Dashed' | 'DoubleSolid' | 'DoubleDashed' |
'SolidDashed' | 'DashedSolid'

Type of lane boundary marking, specified as one of the following:

• 'Unmarked' — No physical lane marker exists

 clothoidLaneBoundary class

4-633

• 'Solid' — Single unbroken line
• 'Dashed' — Single line of dashed lane markers
• 'DoubleSolid' — two unbroken lines
• 'DoubleDashed' — Two dashed lines
• 'SolidDashed' — Solid line on the left and a dashed line on the right
• 'DashedSolid' — Dashed line on the left and a solid line on the right

Example: 'SolidDashed'

Strength — Strength of lane boundary marking
1 (default) | scalar from 0 to 1

Strength of the lane boundary marking, specified as a scalar from 0 through 1. A value of
0 corresponds to a marking that is not visible and a value of 1 corresponds to a marking
that is completely visible. Values in between are partially visible.
Example: 0.9
Data Types: single | double

XExtent — Extent of the lane boundary along x-axis
[0 Inf] (default) | 1-by-2 vector

Extent of the lane boundary along the x-axis, specified as a 1-by-2 vector of the form
[Xmin Xmax]. Units are in meters.
Example: [0 100]
Data Types: single | double

Width — Lane boundary width
0 (default) | positive scalar

Lane boundary width, specified as a positive scalar. For a double-line lane marking, this
value applies to both lines and the distance between the lines. Units are in meters.
Example: 0.15
Data Types: single | double

4 Objects in Automated Driving System Toolbox

4-634

Methods

computeBoundaryModel Compute lane boundary points from clothoid lane boundary
model

Examples

Create Clothoid Lane Boundaries

Create clothoid curves to represent left and right lane boundaries. Then. plot the curves.

Create the left boundary.

lb = clothoidLaneBoundary;
lb.BoundaryType = 'Solid';
lb.Strength = 1;
lb.Width = 0.2;
lb.CurveLength = 40;
lb.Curvature = -0.8;
lb.LateralOffset = 2;
lb.HeadingAngle = 10;

Create the right boundary with almost identical properties.

rb = lb;
rb.LateralOffset = -2;

Create a bird's-eye plot. Then, create the lane boundary plotters and plot the boundaries.

bep = birdsEyePlot('XLimits',[0,50],'YLimits',[-10, 10]);
lbPlotter = laneBoundaryPlotter(bep,'DisplayName','Left-lane boundary','Color','r');
rbPlotter = laneBoundaryPlotter(bep,'DisplayName','Right-lane boundary','Color','g');
plotLaneBoundary(lbPlotter,lb)
plotLaneBoundary(rbPlotter,rb);
grid
hold on

 clothoidLaneBoundary class

4-635

Plot the coordinates of selected points along the boundaries.

x = [0:5:50];
yl = computeBoundaryModel(lb,x);
yr = computeBoundaryModel(rb,x);
plot(x,yl,'ro')
plot(x,yr,'go')
hold off

4 Objects in Automated Driving System Toolbox

4-636

See Also
laneBoundaries | laneBoundaryPlotter | laneMarking | lanespec |
plotLaneBoundary

Introduced in R2018a

 clothoidLaneBoundary class

4-637

computeBoundaryModel
Class: clothoidLaneBoundary

Compute lane boundary points from clothoid lane boundary model

Syntax
yworld = computeBoundaryModel(boundary,xworld)

Description
yworld = computeBoundaryModel(boundary,xworld) returns lane boundary
points, yworld, derived from a lane boundary, boundary, at points specified by the
coordinates, xworld. The corresponding y-coordinates are returned in yworld.

Input Arguments
boundary — Lane boundary model
clothoidLaneBoundary object

Lane boundary model, specified as a clothoidLaneBoundary object.

xworld — x-world coordinates
N-length real-valued vector

x-world coordinates, specified as a N-length real-valued vector.
Example: 2:2.5:100
Data Types: single | double

Output Arguments
yworld — y-world coordinates
N-length real-valued vector

4 Objects in Automated Driving System Toolbox

4-638

y-world coordinates, returned as a N-length real-valued vector. The length and data type
of yWorld are the same as for xWorld.
Data Types: single | double

Examples

Create Clothoid Lane Boundaries

Create clothoid curves to represent left and right lane boundaries. Then. plot the curves.

Create the left boundary.

lb = clothoidLaneBoundary;
lb.BoundaryType = 'Solid';
lb.Strength = 1;
lb.Width = 0.2;
lb.CurveLength = 40;
lb.Curvature = -0.8;
lb.LateralOffset = 2;
lb.HeadingAngle = 10;

Create the right boundary with almost identical properties.

rb = lb;
rb.LateralOffset = -2;

Create a bird's-eye plot. Then, create the lane boundary plotters and plot the boundaries.

bep = birdsEyePlot('XLimits',[0,50],'YLimits',[-10, 10]);
lbPlotter = laneBoundaryPlotter(bep,'DisplayName','Left-lane boundary','Color','r');
rbPlotter = laneBoundaryPlotter(bep,'DisplayName','Right-lane boundary','Color','g');
plotLaneBoundary(lbPlotter,lb)
plotLaneBoundary(rbPlotter,rb);
grid
hold on

 computeBoundaryModel

4-639

Plot the coordinates of selected points along the boundaries.

x = [0:5:50];
yl = computeBoundaryModel(lb,x);
yr = computeBoundaryModel(rb,x);
plot(x,yl,'ro')
plot(x,yr,'go')
hold off

4 Objects in Automated Driving System Toolbox

4-640

See Also
laneBoundaries

Introduced in R2018a

 computeBoundaryModel

4-641

currentLane
Current lane of actor

Syntax
cl = currentLane(ac)
[cl,numlanes] = currentLane(ac)

Description
cl = currentLane(ac) returns the current lane, cl, of an actor, ac.

[cl,numlanes] = currentLane(ac) also returns the number of road lanes,
numlanes.

Examples

Find Current Lanes of Two Cars

This example shows how to obtain the current lane of a car during a driving scenario
simulation. The car is driving along a straight road at 20 m/s.

Create an empty driving scenario. Then, add a straight road with three lanes.

s = drivingScenario;
roadCenters = [0 0; 80 0];
road(s,roadCenters,'Lanes',lanespec([1 2],'Width',3));

Add an ego car moving at 20 m/s.

car1 = vehicle(s,'Position',[5 0 0],'Length',3,'Width',2,'Height',1.6);
trajectory(car1,[1 0 0; 20 0 0; 30 0 0;50 0 0],20);
car2 = vehicle(s,'Position',[5 0 0],'Length',3,'Width',2,'Height',1.6);
trajectory(car2,[5 -3 0; 20 -3 0; 30 -3 0;50 -3 0],10);

4 Objects in Automated Driving System Toolbox

4-642

Plot the scenario.

plot(s)

Run the simulation loop.

while advance(s)
 [cl1,numlanes] = currentLane(car1);
 [cl2,numlanes] = currentLane(car2);
end

 currentLane

4-643

Display the current lane.

disp(cl1)
disp(cl2)

 2

4 Objects in Automated Driving System Toolbox

4-644

 3

Input Arguments
ac — Scenario actor
Actor object | Vehicle object

Scenario actor, specified as an Actor or Vehicle object. To create actors, use the actor
or vehicle method.

Output Arguments
cl — Road lane on which actor is traveling
positive integer | []

Road lane on which actor is traveling, specified as a positive integer. Lanes are numbered
from left to right relative to the actor starting from 1. When the actor is not on a road or
is on a road without any lanes specified, empty values are returned.
Data Types: double

numlanes — Number of road lanes
positive integer | []

Number of road lanes, specified as a positive integer. When the actor is not on a road or is
on a road without any lanes specified, empty values are returned.
Data Types: double

See Also
actor | laneBoundaries | vehicle

Introduced in R2018a

 currentLane

4-645

inflationCollisionChecker
Collision-checking configuration for costmap based on inflation

Description
The inflationCollisionChecker function creates an
InflationCollisionChecker object, which holds the collision-checking configuration
of a vehicle costmap. A vehicle costmap with this configuration inflates the size of
obstacles in the vehicle environment. This inflation is based on the specified
InflationCollisionChecker properties, such as the dimensions of the vehicle and
the radius of circles required to enclose the vehicle. For more details, see “Algorithms” on
page 4-656. Path planning algorithms, such as pathPlannerRRT, use this costmap
collision-checking configuration to avoid inflated obstacles and plan collision-free paths
through an environment.

Use the InflationCollisionChecker object to set the CollisionChecker property
of your vehicleCostmap object. This collision-checking configuration affects the return
values of the checkFree and checkOccupied functions used by vehicleCostmap.
These values indicate whether a vehicle pose is free or occupied.

Creation

Syntax
ccConfig = inflationCollisionChecker
ccConfig = inflationCollisionChecker(vehicleDims)
ccConfig = inflationCollisionChecker(vehicleDims,numCircles)
ccConfig = inflationCollisionChecker(___ ,Name,Value)

Description
ccConfig = inflationCollisionChecker creates an
InflationCollisionChecker object, ccConfig, that holds the collision-checking

4 Objects in Automated Driving System Toolbox

4-646

configuration of a vehicle costmap. This object uses one circle to enclose the vehicle. The
dimensions of the vehicle correspond to the values of a default vehicleDimensions
object.

ccConfig = inflationCollisionChecker(vehicleDims) specifies the dimensions
of the vehicle, where vehicleDims is a vehicleDimensions object. The vehicleDims
input sets the VehicleDimensions property of ccConfig.

ccConfig = inflationCollisionChecker(vehicleDims,numCircles) also
specifies the number of circles used to enclose the vehicle. The numCircles input sets
the NumCircles property of ccConfig.

ccConfig = inflationCollisionChecker(___ ,Name,Value) sets properties
using one or more name-value pairs, in addition to the input arguments from preceding
syntaxes. For example, inflationCollisionChecker('InflationRadius',
1.2,'CenterPlacements',[0.2 0.5 0.8]) sets specific values for the inflation
radius and center placements. Enclose each property name in quotes.

Properties
NumCircles — Number of circles enclosing the vehicle
1 (default) | positive integer

Number of circles used to enclose the vehicle and calculate the inflation radius, specified
as a positive integer. Typical values are from 1 to 5.

• For faster but more conservative collision checking, decrease the number of circles.
This approach improves performance because the path planning algorithm makes
fewer collision checks.

• For slower but more precise collision checking, increase the number of circles. This
approach is useful when planning a path around tight corners or through narrow
corridors, such as in a parking lot.

CenterPlacements — Normalized placement of circle centers
1-by-NumCircles numeric vector of values in the range [0, 1]

Normalized placement of circle centers along the longitudinal axis of the vehicle,
specified as a 1-by-NumCircles numeric vector of values in the range [0, 1].

• A value of 0 places a circle center at the rear of the vehicle.

 inflationCollisionChecker

4-647

• A value of 1 places a circle center at the front of the vehicle.

Specify CenterPlacements when you want to align the circles with exact positions on
the vehicle. If you leave CenterPlacements unspecified, the object computes the center
placements so that the circles completely enclose the vehicle. If you change the number
of center placements, NumCircles is updated to the number of elements in
CenterPlacements.

VehicleDimensions — Vehicle dimensions
vehicleDimensions object

Vehicle dimensions used to compute the inflation radius, specified as a
vehicleDimensions object. If you leave this property unspecified, the
InflationCollisionChecker object uses the dimensions of a default
vehicleDimensions object. Vehicle dimensions are in world units.

InflationRadius — Inflation radius
nonnegative real number

Inflation radius, specified as a nonnegative real number. By default, the object computes
the inflation radius based on the values of NumCircles, CenterPlacements, and
VehicleDimensions. For more details, see “Algorithms” on page 4-656.

Object Functions
plot Plot collision configuration

4 Objects in Automated Driving System Toolbox

4-648

Examples

Plan Path Using Different Collision-Checking Configurations

Plan a vehicle path to a narrow parking spot by using the optimized rapidly exploring
random tree (RRT*) algorithm. Try different collision-checking configurations in the
costmap used by the RRT* path planner.

Load and display a costmap of a parking lot. The costmap is a vehicleCostmap object.
By default, vehicleCostmap uses a collision-checking configuration that inflates
obstacles based on a radius of only one circle enclosing the vehicle. The costmap
overinflates the obstacles (the parking spot boundaries).

data = load('parkingLotCostmap.mat');
costmap = data.parkingLotCostmap;

figure
plot(costmap)
title('Collision Checking with One Circle')

 inflationCollisionChecker

4-649

Use inflationCollisionChecker to create a new collision-checking configuration for
the costmap.

• To decrease inflation of the obstacles, increase the number of circles enclosing the
vehicle.

• To specify the dimensions of the vehicle, use a vehicleDimensions object.

Specify the collision-checking configuration in the CollisionChecker property of the
costmap.

vehicleDims = vehicleDimensions(4.5,1.7); % 4.5 m long, 1.7 m wide
numCircles = 3;
ccConfig = inflationCollisionChecker(vehicleDims,numCircles);
costmap.CollisionChecker = ccConfig;

4 Objects in Automated Driving System Toolbox

4-650

Display the costmap with the new collision-checking configuration. The inflated areas are
reduced.

figure
plot(costmap)
title('Collision Checking with Three Circles')

Define a planning problem: a vehicle starts near the left entrance of the parking lot and
ends in a parking spot.

startPose = [11 10 0]; % [meters, meters, degrees]
goalPose = [31.5 17 90];

Use a pathPlannerRRT object to plan a path to the parking spot. Plot the planned path.

 inflationCollisionChecker

4-651

planner = pathPlannerRRT(costmap);
refPath = plan(planner,startPose,goalPose);

hold on
plot(refPath)
hold off

Create Collision-Checking Configuration with Center Placements

Create a collision-checking configuration for a costmap. Manually specify the circle
centers so that they fully enclose the vehicle.

4 Objects in Automated Driving System Toolbox

4-652

Define the dimensions of a vehicle by using a vehicleDimensions object.

length = 5; % meters
width = 2; % meters
vehicleDims = vehicleDimensions(length,width);

Define three circle centers and the inflation radius to use for collision checking. Place one
center at the vehicle's midpoint. Offset the other two centers by an equal amount on
either end of the vehicle.

distFromSide = 0.175;
centerPlacements = [distFromSide 0.5 1-distFromSide];
inflationRadius = 1.2;

Create and display the collision-checking configuration.

ccConfig = inflationCollisionChecker(vehicleDims, ...
 'CenterPlacements',centerPlacements,'InflationRadius',inflationRadius);

figure
plot(ccConfig)

 inflationCollisionChecker

4-653

In this configuration, the corners of the vehicle are not enclosed within the circles. To
fully enclose the vehicle, increase the inflation radius. Display the updated configuration.

ccConfig.InflationRadius = 1.3;
plot(ccConfig)

4 Objects in Automated Driving System Toolbox

4-654

Use this collision-checking configuration to create a 10-by-20 meter costmap.

costmap = vehicleCostmap(10,20,0.1,'CollisionChecker',ccConfig);

Tips
• To visually verify that the circles completely enclose the vehicle, use the plot

function. If the circles do not completely enclose the vehicle, some of the free poses
returned by checkFree (or unoccupied poses returned by checkOccupied) might
actually be in collision.

 inflationCollisionChecker

4-655

Algorithms
The InflationRadius property of InflationCollisionChecker determines the
amount, in world units, by which to inflate obstacles. By default, InflationRadius is
equal to the radius of the smallest set of overlapping circles required to completely
enclose the vehicle, as determined by the following properties:

• NumCircles — Number of circles used to enclose the vehicle
• CenterPlacements — Placements of the circle centers along the longitudinal axis of

the vehicle
• VehicleDimensions — Dimensions of the vehicle

For more details about how this collision-checking configuration defines inflated areas in
a costmap, see the “Algorithms” on page 4-505 section of vehicleCostmap.

References
[1] Ziegler, J., and C. Stiller. "Fast Collision Checking for Intelligent Vehicle Motion

Planning." IEEE Intelligent Vehicle Symposium. June 21–24, 2010.

See Also
Objects
pathPlannerRRT | vehicleCostmap | vehicleDimensions

Topics
“Automated Parking Valet”

4 Objects in Automated Driving System Toolbox

4-656

Introduced in R2018b

 inflationCollisionChecker

4-657

plot
Plot collision configuration

Syntax
plot(ccConfig)
plot(ccConfig,Name,Value)

Description
plot(ccConfig) plots the collision-checking configuration of an
InflationCollisionChecker object. Use plot to visually verify that the circles in the
configuration fully enclose the vehicle.

plot(ccConfig,Name,Value) specifies options using one or more Name,Value pair
arguments. For example, plot(ccConfig,'Ruler','Off') turns off the ruler that
indicates the locations of the circle centers.

Examples

Create Collision-Checking Configuration with Center Placements

Create a collision-checking configuration for a costmap. Manually specify the circle
centers so that they fully enclose the vehicle.

Define the dimensions of a vehicle by using a vehicleDimensions object.

length = 5; % meters
width = 2; % meters
vehicleDims = vehicleDimensions(length,width);

Define three circle centers and the inflation radius to use for collision checking. Place one
center at the vehicle's midpoint. Offset the other two centers by an equal amount on
either end of the vehicle.

4 Objects in Automated Driving System Toolbox

4-658

distFromSide = 0.175;
centerPlacements = [distFromSide 0.5 1-distFromSide];
inflationRadius = 1.2;

Create and display the collision-checking configuration.

ccConfig = inflationCollisionChecker(vehicleDims, ...
 'CenterPlacements',centerPlacements,'InflationRadius',inflationRadius);

figure
plot(ccConfig)

In this configuration, the corners of the vehicle are not enclosed within the circles. To
fully enclose the vehicle, increase the inflation radius. Display the updated configuration.

 plot

4-659

ccConfig.InflationRadius = 1.3;
plot(ccConfig)

Use this collision-checking configuration to create a 10-by-20 meter costmap.

costmap = vehicleCostmap(10,20,0.1,'CollisionChecker',ccConfig);

Input Arguments
ccConfig — Collision-checking configuration
InflationCollisionChecker object

4 Objects in Automated Driving System Toolbox

4-660

Collision-checking configuration, specified as an InflationCollisionChecker object.
To create a collision-checking configuration, use the inflationCollisionChecker
function.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: plot(ccConfig,'Parent',ax) plots the collision configuration in axes ax.

Parent — Axes on which to plot collision configuration
Axes object

Axes on which to plot the collision configuration, specified as the comma-separated pair
consisting of 'Parent' and an Axes object. To create an Axes object, use the axes
function.

To plot the collision configuration in a new figure, leave 'Parent' unspecified.

Ruler — Display ruler
'on' (default) | 'off'

Display the ruler that shows the locations of the circle centers, specified as the comma-
separated pair consisting of 'Ruler' and 'on' or 'off'.

See Also
inflationCollisionChecker

Introduced in R2018b

 plot

4-661

